10 81

From Knot Atlas
Jump to: navigation, search

10 80.gif

10_80

10 82.gif

10_82

Contents

10 81.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 81's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 81 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X8493 X12,6,13,5 X16,9,17,10 X20,17,1,18 X18,13,19,14 X14,19,15,20 X10,15,11,16 X6,12,7,11 X2837
Gauss code 1, -10, 2, -1, 3, -9, 10, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5
Dowker-Thistlethwaite code 4 8 12 2 16 6 18 10 20 14
Conway Notation [(21,2)(21,2)]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 12, width is 5,

Braid index is 5

10 81 ML.gif 10 81 AP.gif
[{3, 12}, {2, 5}, {1, 3}, {13, 9}, {12, 2}, {4, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 6}, {5, 13}, {11, 4}, {8, 1}]

[edit Notes on presentations of 10 81]


Three dimensional invariants

Symmetry type Negative amphicheiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 14.4927
A-Polynomial See Data:10 81/A-polynomial

[edit Notes for 10 81's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 3
Rasmussen s-Invariant 0

[edit Notes for 10 81's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+8 t^2-20 t+27-20 t^{-1} +8 t^{-2} - t^{-3}
Conway polynomial -z^6+2 z^4+3 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 85, 0 }
Jones polynomial -q^5+3 q^4-7 q^3+11 q^2-13 q+15-13 q^{-1} +11 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5}
HOMFLY-PT polynomial (db, data sources) -z^6+2 a^2 z^4+2 z^4 a^{-2} -2 z^4-a^4 z^2+3 a^2 z^2+3 z^2 a^{-2} -z^2 a^{-4} -z^2-a^4+a^2+ a^{-2} - a^{-4} +1
Kauffman polynomial (db, data sources) a z^9+z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+5 a^3 z^7+13 a z^7+13 z^7 a^{-1} +5 z^7 a^{-3} +3 a^4 z^6+3 z^6 a^{-4} -6 z^6+a^5 z^5-8 a^3 z^5-31 a z^5-31 z^5 a^{-1} -8 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4-9 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -8 z^4-2 a^5 z^3+5 a^3 z^3+25 a z^3+25 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2+6 a^2 z^2+6 z^2 a^{-2} +3 z^2 a^{-4} +6 z^2+a^5 z-2 a^3 z-8 a z-8 z a^{-1} -2 z a^{-3} +z a^{-5} -a^4-a^2- a^{-2} - a^{-4} +1
The A2 invariant -q^{16}+q^{12}-3 q^{10}+2 q^8-q^4+4 q^2-1+4 q^{-2} - q^{-4} +2 q^{-8} -3 q^{-10} + q^{-12} - q^{-16}
The G2 invariant q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+9 q^{72}-9 q^{70}+q^{68}+14 q^{66}-35 q^{64}+56 q^{62}-69 q^{60}+55 q^{58}-16 q^{56}-50 q^{54}+129 q^{52}-183 q^{50}+191 q^{48}-130 q^{46}+4 q^{44}+139 q^{42}-255 q^{40}+293 q^{38}-227 q^{36}+79 q^{34}+91 q^{32}-219 q^{30}+247 q^{28}-166 q^{26}+14 q^{24}+137 q^{22}-214 q^{20}+173 q^{18}-34 q^{16}-147 q^{14}+296 q^{12}-335 q^{10}+249 q^8-55 q^6-172 q^4+360 q^2-427+360 q^{-2} -172 q^{-4} -55 q^{-6} +249 q^{-8} -335 q^{-10} +296 q^{-12} -147 q^{-14} -34 q^{-16} +173 q^{-18} -214 q^{-20} +137 q^{-22} +14 q^{-24} -166 q^{-26} +247 q^{-28} -219 q^{-30} +91 q^{-32} +79 q^{-34} -227 q^{-36} +293 q^{-38} -255 q^{-40} +139 q^{-42} +4 q^{-44} -130 q^{-46} +191 q^{-48} -183 q^{-50} +129 q^{-52} -50 q^{-54} -16 q^{-56} +55 q^{-58} -69 q^{-60} +56 q^{-62} -35 q^{-64} +14 q^{-66} + q^{-68} -9 q^{-70} +9 q^{-72} -8 q^{-74} +5 q^{-76} -2 q^{-78} + q^{-80}