K11a14

From Knot Atlas
Jump to: navigation, search

K11a13.gif

K11a13

K11a15.gif

K11a15

Contents

K11a14.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a14 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X18,11,19,12 X6,13,7,14 X20,16,21,15 X10,17,11,18 X22,20,1,19 X16,22,17,21
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, 5, -9, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -10
Dowker-Thistlethwaite code 4 8 12 2 14 18 6 20 10 22 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a14 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2,3\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a14/ThurstonBennequinNumber
Hyperbolic Volume 16.4066
A-Polynomial See Data:K11a14/A-polynomial

[edit Notes for K11a14's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 0

[edit Notes for K11a14's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-5 t^3+15 t^2-28 t+35-28 t^{-1} +15 t^{-2} -5 t^{-3} + t^{-4}
Conway polynomial z^8+3 z^6+5 z^4+3 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 133, 0 }
Jones polynomial q^6-4 q^5+8 q^4-14 q^3+19 q^2-21 q+22-18 q^{-1} +14 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5}
HOMFLY-PT polynomial (db, data sources) z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-12 z^2 a^{-2} +2 z^2 a^{-4} +20 z^2-4 a^2-6 a^{-2} + a^{-4} +10
Kauffman polynomial (db, data sources) z^{10} a^{-2} +z^{10}+5 a z^9+9 z^9 a^{-1} +4 z^9 a^{-3} +8 a^2 z^8+17 z^8 a^{-2} +6 z^8 a^{-4} +19 z^8+6 a^3 z^7+4 a z^7-z^7 a^{-1} +5 z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-14 a^2 z^6-46 z^6 a^{-2} -12 z^6 a^{-4} +z^6 a^{-6} -50 z^6+a^5 z^5-9 a^3 z^5-24 a z^5-36 z^5 a^{-1} -32 z^5 a^{-3} -10 z^5 a^{-5} -4 a^4 z^4+17 a^2 z^4+41 z^4 a^{-2} +6 z^4 a^{-4} -2 z^4 a^{-6} +54 z^4-2 a^5 z^3+7 a^3 z^3+29 a z^3+43 z^3 a^{-1} +31 z^3 a^{-3} +8 z^3 a^{-5} +a^4 z^2-13 a^2 z^2-21 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} -32 z^2+a^5 z-3 a^3 z-12 a z-16 z a^{-1} -10 z a^{-3} -2 z a^{-5} +4 a^2+6 a^{-2} + a^{-4} +10
The A2 invariant -q^{14}+q^{12}-4 q^{10}+q^8+q^6-2 q^4+7 q^2-1+5 q^{-2} -2 q^{-6} +2 q^{-8} -5 q^{-10} + q^{-12} - q^{-16} + q^{-18}
The G2 invariant q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+10 q^{72}-10 q^{70}+4 q^{68}+10 q^{66}-29 q^{64}+52 q^{62}-74 q^{60}+78 q^{58}-61 q^{56}+7 q^{54}+89 q^{52}-198 q^{50}+290 q^{48}-316 q^{46}+225 q^{44}-31 q^{42}-245 q^{40}+508 q^{38}-649 q^{36}+586 q^{34}-312 q^{32}-108 q^{30}+511 q^{28}-748 q^{26}+712 q^{24}-413 q^{22}-30 q^{20}+427 q^{18}-607 q^{16}+494 q^{14}-126 q^{12}-308 q^{10}+628 q^8-659 q^6+373 q^4+140 q^2-660+1001 q^{-2} -986 q^{-4} +624 q^{-6} -15 q^{-8} -611 q^{-10} +1037 q^{-12} -1105 q^{-14} +803 q^{-16} -249 q^{-18} -340 q^{-20} +734 q^{-22} -798 q^{-24} +534 q^{-26} -76 q^{-28} -370 q^{-30} +589 q^{-32} -511 q^{-34} +163 q^{-36} +282 q^{-38} -631 q^{-40} +730 q^{-42} -540 q^{-44} +132 q^{-46} +313 q^{-48} -642 q^{-50} +740 q^{-52} -591 q^{-54} +284 q^{-56} +60 q^{-58} -328 q^{-60} +447 q^{-62} -411 q^{-64} +273 q^{-66} -95 q^{-68} -52 q^{-70} +134 q^{-72} -153 q^{-74} +123 q^{-76} -69 q^{-78} +24 q^{-80} +9 q^{-82} -23 q^{-84} +21 q^{-86} -16 q^{-88} +8 q^{-90} -3 q^{-92} + q^{-94}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (3, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
12 -8 72 62 -6 -96 -\frac{368}{3} -\frac{32}{3} -8 288 32 744 -72 \frac{7311}{10} \frac{2974}{15} -\frac{698}{15} \frac{145}{6} -\frac{689}{10}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of K11a14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         51 4
7        93  -6
5       105   5
3      119    -2
1     1110     1
-1    812      4
-3   610       -4
-5  28        6
-7 16         -5
-9 2          2
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a13.gif

K11a13

K11a15.gif

K11a15