From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a158 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X18,5,19,6 X14,7,15,8 X2,10,3,9 X16,11,17,12 X20,14,21,13 X8,15,9,16 X22,17,1,18 X6,19,7,20 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -4, 8, -6, 9, -3, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 10 18 14 2 16 20 8 22 6 12
A Braid Representative
A Morse Link Presentation K11a158 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a158/ThurstonBennequinNumber
Hyperbolic Volume 16.235
A-Polynomial See Data:K11a158/A-polynomial

[edit Notes for K11a158's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 2

[edit Notes for K11a158's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6-4 z^4-2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 119, -2 }
Jones polynomial -q^4+4 q^3-8 q^2+13 q-16+19 q^{-1} -19 q^{-2} +16 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +8 z^4+6 a^4 z^2-17 a^2 z^2-2 z^2 a^{-2} +11 z^2+3 a^4-7 a^2- a^{-2} +6
Kauffman polynomial (db, data sources) 2 a^2 z^{10}+2 z^{10}+7 a^3 z^9+12 a z^9+5 z^9 a^{-1} +10 a^4 z^8+14 a^2 z^8+4 z^8 a^{-2} +8 z^8+9 a^5 z^7-7 a^3 z^7-30 a z^7-13 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-19 a^4 z^6-57 a^2 z^6-14 z^6 a^{-2} -46 z^6+3 a^7 z^5-14 a^5 z^5-12 a^3 z^5+10 a z^5+2 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+17 a^4 z^4+65 a^2 z^4+15 z^4 a^{-2} +56 z^4-2 a^7 z^3+12 a^5 z^3+18 a^3 z^3+10 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} -a^8 z^2+3 a^6 z^2-9 a^4 z^2-34 a^2 z^2-6 z^2 a^{-2} -27 z^2-4 a^5 z-7 a^3 z-5 a z-3 z a^{-1} -z a^{-3} +3 a^4+7 a^2+ a^{-2} +6
The A2 invariant q^{20}-q^{18}+3 q^{16}-q^{14}-q^{12}+2 q^{10}-5 q^8+2 q^6-3 q^4+q^2+3- q^{-2} +4 q^{-4} - q^{-6} + q^{-10} - q^{-12}
The G2 invariant q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+9 q^{100}-19 q^{98}+29 q^{96}-36 q^{94}+31 q^{92}-18 q^{90}-6 q^{88}+41 q^{86}-71 q^{84}+95 q^{82}-101 q^{80}+80 q^{78}-38 q^{76}-28 q^{74}+110 q^{72}-184 q^{70}+232 q^{68}-221 q^{66}+138 q^{64}+15 q^{62}-189 q^{60}+341 q^{58}-389 q^{56}+299 q^{54}-92 q^{52}-167 q^{50}+361 q^{48}-401 q^{46}+268 q^{44}-5 q^{42}-260 q^{40}+396 q^{38}-338 q^{36}+88 q^{34}+233 q^{32}-489 q^{30}+543 q^{28}-376 q^{26}+39 q^{24}+334 q^{22}-601 q^{20}+659 q^{18}-500 q^{16}+167 q^{14}+201 q^{12}-487 q^{10}+590 q^8-473 q^6+202 q^4+126 q^2-368+438 q^{-2} -298 q^{-4} +21 q^{-6} +276 q^{-8} -444 q^{-10} +409 q^{-12} -173 q^{-14} -149 q^{-16} +430 q^{-18} -533 q^{-20} +435 q^{-22} -184 q^{-24} -118 q^{-26} +340 q^{-28} -418 q^{-30} +346 q^{-32} -175 q^{-34} -7 q^{-36} +131 q^{-38} -178 q^{-40} +153 q^{-42} -91 q^{-44} +30 q^{-46} +14 q^{-48} -32 q^{-50} +28 q^{-52} -19 q^{-54} +9 q^{-56} -3 q^{-58} + q^{-60}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a34,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (-2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-8 24 32 \frac{164}{3} \frac{148}{3} -192 -432 -128 -136 -\frac{256}{3} 288 -\frac{1312}{3} -\frac{1184}{3} \frac{6449}{15} \frac{6884}{15} -\frac{25684}{45} \frac{2047}{9} -\frac{3631}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a158. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
9           1-1
7          3 3
5         51 -4
3        83  5
1       85   -3
-1      118    3
-3     99     0
-5    710      -3
-7   59       4
-9  27        -5
-11 15         4
-13 2          -2
-151           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.