From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a169 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X18,5,19,6 X16,7,17,8 X14,10,15,9 X2,11,3,12 X20,14,21,13 X22,15,1,16 X6,17,7,18 X12,20,13,19 X8,21,9,22
Gauss code 1, -6, 2, -1, 3, -9, 4, -11, 5, -2, 6, -10, 7, -5, 8, -4, 9, -3, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 10 18 16 14 2 20 22 6 12 8
A Braid Representative
A Morse Link Presentation K11a169 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number \{1,2\}
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a169/ThurstonBennequinNumber
Hyperbolic Volume 16.1443
A-Polynomial See Data:K11a169/A-polynomial

[edit Notes for K11a169's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 0
Rasmussen s-Invariant 0

[edit Notes for K11a169's four dimensional invariants]

Polynomial invariants

Alexander polynomial -2 t^3+12 t^2-28 t+37-28 t^{-1} +12 t^{-2} -2 t^{-3}
Conway polynomial -2 z^6+2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 121, 0 }
Jones polynomial q^4-4 q^3+8 q^2-13 q+18-19 q^{-1} +19 q^{-2} -16 q^{-3} +12 q^{-4} -7 q^{-5} +3 q^{-6} - q^{-7}
HOMFLY-PT polynomial (db, data sources) -z^2 a^6-a^6+2 z^4 a^4+3 z^2 a^4+a^4-z^6 a^2-z^4 a^2+z^2 a^2+a^2-z^6-2 z^4-2 z^2+z^4 a^{-2} +z^2 a^{-2}
Kauffman polynomial (db, data sources) 2 a^4 z^{10}+2 a^2 z^{10}+4 a^5 z^9+11 a^3 z^9+7 a z^9+3 a^6 z^8+4 a^4 z^8+12 a^2 z^8+11 z^8+a^7 z^7-11 a^5 z^7-27 a^3 z^7-4 a z^7+11 z^7 a^{-1} -11 a^6 z^6-28 a^4 z^6-40 a^2 z^6+8 z^6 a^{-2} -15 z^6-4 a^7 z^5+5 a^5 z^5+13 a^3 z^5-13 a z^5-13 z^5 a^{-1} +4 z^5 a^{-3} +13 a^6 z^4+31 a^4 z^4+29 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +3 z^4+5 a^7 z^3+4 a^5 z^3+a^3 z^3+8 a z^3+4 z^3 a^{-1} -2 z^3 a^{-3} -6 a^6 z^2-11 a^4 z^2-5 a^2 z^2+2 z^2 a^{-2} +2 z^2-2 a^7 z-2 a^5 z+a^6+a^4-a^2
The A2 invariant Data:K11a169/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a169/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a36,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (2, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
8 -24 32 \frac{268}{3} \frac{44}{3} -192 -368 0 -120 \frac{256}{3} 288 \frac{2144}{3} \frac{352}{3} \frac{22951}{15} -\frac{1148}{5} \frac{35524}{45} \frac{1001}{9} \frac{1831}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of K11a169. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
9           11
7          3 -3
5         51 4
3        83  -5
1       105   5
-1      109    -1
-3     99     0
-5    710      3
-7   59       -4
-9  27        5
-11 15         -4
-13 2          2
-151           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.