K11a216

From Knot Atlas
Jump to: navigation, search

K11a215.gif

K11a215

K11a217.gif

K11a217

Contents

K11a216.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a216 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X18,6,19,5 X14,7,15,8 X20,10,21,9 X2,12,3,11 X22,13,1,14 X8,15,9,16 X10,18,11,17 X6,20,7,19 X16,21,17,22
Gauss code 1, -6, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -4, 8, -11, 9, -3, 10, -5, 11, -7
Dowker-Thistlethwaite code 4 12 18 14 20 2 22 8 10 6 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation K11a216 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a216/ThurstonBennequinNumber
Hyperbolic Volume 17.2795
A-Polynomial See Data:K11a216/A-polynomial

[edit Notes for K11a216's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 1
Rasmussen s-Invariant -2

[edit Notes for K11a216's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+6 t^3-17 t^2+31 t-37+31 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4}
Conway polynomial -z^8-2 z^6-z^4+z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 147, 2 }
Jones polynomial -q^8+4 q^7-9 q^6+15 q^5-21 q^4+24 q^3-23 q^2+21 q-15+9 q^{-1} -4 q^{-2} + q^{-3}
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-8 z^2 a^{-2} +8 z^2 a^{-4} -2 z^2 a^{-6} +3 z^2- a^{-2} +2 a^{-4} - a^{-6} +1
Kauffman polynomial (db, data sources) 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +13 z^9 a^{-3} +7 z^9 a^{-5} +15 z^8 a^{-2} +18 z^8 a^{-4} +10 z^8 a^{-6} +7 z^8+4 a z^7-4 z^7 a^{-1} -16 z^7 a^{-3} +8 z^7 a^{-7} +a^2 z^6-44 z^6 a^{-2} -47 z^6 a^{-4} -15 z^6 a^{-6} +4 z^6 a^{-8} -15 z^6-9 a z^5-13 z^5 a^{-1} -9 z^5 a^{-3} -18 z^5 a^{-5} -12 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+38 z^4 a^{-2} +41 z^4 a^{-4} +10 z^4 a^{-6} -5 z^4 a^{-8} +10 z^4+6 a z^3+12 z^3 a^{-1} +16 z^3 a^{-3} +18 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-15 z^2 a^{-2} -15 z^2 a^{-4} -4 z^2 a^{-6} +z^2 a^{-8} -4 z^2-a z-3 z a^{-1} -4 z a^{-3} -4 z a^{-5} -2 z a^{-7} + a^{-2} +2 a^{-4} + a^{-6} +1
The A2 invariant q^8-2 q^6+3 q^4-2 q^2-1+4 q^{-2} -4 q^{-4} +6 q^{-6} -2 q^{-8} + q^{-10} + q^{-12} -4 q^{-14} +4 q^{-16} -2 q^{-18} + q^{-22} - q^{-24}
The G2 invariant q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+22 q^{38}-25 q^{36}+14 q^{34}+18 q^{32}-66 q^{30}+129 q^{28}-176 q^{26}+173 q^{24}-98 q^{22}-67 q^{20}+290 q^{18}-494 q^{16}+587 q^{14}-481 q^{12}+158 q^{10}+304 q^8-746 q^6+998 q^4-914 q^2+492+127 q^{-2} -723 q^{-4} +1027 q^{-6} -919 q^{-8} +449 q^{-10} +188 q^{-12} -688 q^{-14} +841 q^{-16} -570 q^{-18} -12 q^{-20} +643 q^{-22} -1038 q^{-24} +998 q^{-26} -517 q^{-28} -239 q^{-30} +989 q^{-32} -1425 q^{-34} +1393 q^{-36} -879 q^{-38} +60 q^{-40} +769 q^{-42} -1323 q^{-44} +1389 q^{-46} -970 q^{-48} +253 q^{-50} +481 q^{-52} -920 q^{-54} +915 q^{-56} -499 q^{-58} -114 q^{-60} +636 q^{-62} -836 q^{-64} +614 q^{-66} -87 q^{-68} -512 q^{-70} +930 q^{-72} -980 q^{-74} +679 q^{-76} -154 q^{-78} -393 q^{-80} +751 q^{-82} -847 q^{-84} +677 q^{-86} -341 q^{-88} -17 q^{-90} +288 q^{-92} -413 q^{-94} +398 q^{-96} -287 q^{-98} +143 q^{-100} -9 q^{-102} -82 q^{-104} +116 q^{-106} -114 q^{-108} +83 q^{-110} -45 q^{-112} +16 q^{-114} +7 q^{-116} -16 q^{-118} +16 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a196, K11a286,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a196,}

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
4 16 8 \frac{158}{3} \frac{34}{3} 64 \frac{448}{3} -\frac{32}{3} 48 \frac{32}{3} 128 \frac{632}{3} \frac{136}{3} \frac{16591}{30} -\frac{234}{5} \frac{10142}{45} \frac{689}{18} \frac{271}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11a216. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        93  6
9       126   -6
7      129    3
5     1112     1
3    1012      -2
1   612       6
-1  39        -6
-3 16         5
-5 3          -3
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a215.gif

K11a215

K11a217.gif

K11a217