From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a221 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X12,3,13,4 X18,5,19,6 X20,7,21,8 X14,10,15,9 X16,12,17,11 X2,13,3,14 X10,16,11,15 X22,17,1,18 X6,19,7,20 X8,21,9,22
Gauss code 1, -7, 2, -1, 3, -10, 4, -11, 5, -8, 6, -2, 7, -5, 8, -6, 9, -3, 10, -4, 11, -9
Dowker-Thistlethwaite code 4 12 18 20 14 16 2 10 22 6 8
A Braid Representative
A Morse Link Presentation K11a221 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a221/ThurstonBennequinNumber
Hyperbolic Volume 12.2428
A-Polynomial See Data:K11a221/A-polynomial

[edit Notes for K11a221's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 2

[edit Notes for K11a221's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-10 t^2+15 t-17+15 t^{-1} -10 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6+4 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 79, -2 }
Jones polynomial q^3-3 q^2+5 q-8+11 q^{-1} -12 q^{-2} +13 q^{-3} -10 q^{-4} +8 q^{-5} -5 q^{-6} +2 q^{-7} - q^{-8}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+2 a^4 z^6-6 a^2 z^6+z^6-a^6 z^4+10 a^4 z^4-13 a^2 z^4+4 z^4-4 a^6 z^2+16 a^4 z^2-12 a^2 z^2+4 z^2-4 a^6+8 a^4-4 a^2+1
Kauffman polynomial (db, data sources) a^4 z^{10}+a^2 z^{10}+2 a^5 z^9+5 a^3 z^9+3 a z^9+3 a^6 z^8+2 a^4 z^8+3 a^2 z^8+4 z^8+3 a^7 z^7-a^5 z^7-14 a^3 z^7-7 a z^7+3 z^7 a^{-1} +2 a^8 z^6-6 a^6 z^6-11 a^4 z^6-17 a^2 z^6+z^6 a^{-2} -13 z^6+a^9 z^5-6 a^7 z^5-4 a^5 z^5+14 a^3 z^5+a z^5-10 z^5 a^{-1} -4 a^8 z^4+9 a^6 z^4+24 a^4 z^4+25 a^2 z^4-3 z^4 a^{-2} +11 z^4-3 a^9 z^3+4 a^7 z^3+11 a^5 z^3+2 a^3 z^3+5 a z^3+7 z^3 a^{-1} +a^8 z^2-10 a^6 z^2-21 a^4 z^2-15 a^2 z^2+z^2 a^{-2} -4 z^2+2 a^9 z-2 a^7 z-7 a^5 z-5 a^3 z-3 a z-z a^{-1} +4 a^6+8 a^4+4 a^2+1
The A2 invariant -q^{24}-q^{22}-q^{20}-2 q^{18}+2 q^{16}+3 q^{12}+3 q^{10}+3 q^6-3 q^4+q^2-1- q^{-2} + q^{-4} - q^{-6} + q^{-8}
The G2 invariant q^{128}-q^{126}+3 q^{124}-4 q^{122}+4 q^{120}-3 q^{118}-q^{116}+8 q^{114}-15 q^{112}+21 q^{110}-22 q^{108}+14 q^{106}-2 q^{104}-18 q^{102}+39 q^{100}-53 q^{98}+53 q^{96}-41 q^{94}+9 q^{92}+23 q^{90}-57 q^{88}+78 q^{86}-84 q^{84}+66 q^{82}-32 q^{80}-20 q^{78}+63 q^{76}-91 q^{74}+91 q^{72}-62 q^{70}+11 q^{68}+39 q^{66}-70 q^{64}+68 q^{62}-27 q^{60}-25 q^{58}+76 q^{56}-83 q^{54}+50 q^{52}+20 q^{50}-89 q^{48}+143 q^{46}-137 q^{44}+89 q^{42}-q^{40}-84 q^{38}+151 q^{36}-164 q^{34}+128 q^{32}-53 q^{30}-32 q^{28}+98 q^{26}-124 q^{24}+104 q^{22}-46 q^{20}-23 q^{18}+69 q^{16}-85 q^{14}+50 q^{12}+10 q^{10}-72 q^8+103 q^6-93 q^4+38 q^2+35-100 q^{-2} +128 q^{-4} -112 q^{-6} +63 q^{-8} +2 q^{-10} -61 q^{-12} +93 q^{-14} -91 q^{-16} +68 q^{-18} -28 q^{-20} -8 q^{-22} +31 q^{-24} -40 q^{-26} +36 q^{-28} -24 q^{-30} +12 q^{-32} + q^{-34} -7 q^{-36} +7 q^{-38} -7 q^{-40} +4 q^{-42} -2 q^{-44} + q^{-46}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a259,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
16 -64 128 \frac{968}{3} \frac{184}{3} -1024 -\frac{5536}{3} -\frac{736}{3} -384 \frac{2048}{3} 2048 \frac{15488}{3} \frac{2944}{3} \frac{157382}{15} -\frac{8648}{15} \frac{229688}{45} \frac{1834}{9} \frac{11222}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a221. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
7           11
5          2 -2
3         31 2
1        52  -3
-1       63   3
-3      76    -1
-5     65     1
-7    47      3
-9   46       -2
-11  14        3
-13 14         -3
-15 1          1
-171           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.