From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a228 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X12,3,13,4 X18,5,19,6 X22,8,1,7 X20,9,21,10 X14,12,15,11 X2,13,3,14 X8,16,9,15 X6,17,7,18 X10,19,11,20 X16,22,17,21
Gauss code 1, -7, 2, -1, 3, -9, 4, -8, 5, -10, 6, -2, 7, -6, 8, -11, 9, -3, 10, -5, 11, -4
Dowker-Thistlethwaite code 4 12 18 22 20 14 2 8 6 10 16
A Braid Representative
A Morse Link Presentation K11a228 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a228/ThurstonBennequinNumber
Hyperbolic Volume 16.809
A-Polynomial See Data:K11a228/A-polynomial

[edit Notes for K11a228's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant 0

[edit Notes for K11a228's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+10 t^2-32 t+47-32 t^{-1} +10 t^{-2} - t^{-3}
Conway polynomial -z^6+4 z^4-z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 133, 0 }
Jones polynomial -q^5+4 q^4-9 q^3+15 q^2-19 q+22-21 q^{-1} +18 q^{-2} -13 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6}
HOMFLY-PT polynomial (db, data sources) a^6-3 z^2 a^4-2 a^4+3 z^4 a^2+3 z^2 a^2+a^2-z^6-z^4-z^2+1+2 z^4 a^{-2} +z^2 a^{-2} -z^2 a^{-4}
Kauffman polynomial (db, data sources) 2 a^2 z^{10}+2 z^{10}+4 a^3 z^9+11 a z^9+7 z^9 a^{-1} +4 a^4 z^8+6 a^2 z^8+10 z^8 a^{-2} +12 z^8+3 a^5 z^7-2 a^3 z^7-19 a z^7-6 z^7 a^{-1} +8 z^7 a^{-3} +a^6 z^6-5 a^4 z^6-14 a^2 z^6-17 z^6 a^{-2} +4 z^6 a^{-4} -29 z^6-8 a^5 z^5-8 a^3 z^5+13 a z^5-12 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4-5 a^4 z^4+3 a^2 z^4+12 z^4 a^{-2} -5 z^4 a^{-4} +22 z^4+7 a^5 z^3+7 a^3 z^3-7 a z^3-z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} +3 a^6 z^2+8 a^4 z^2+3 a^2 z^2-4 z^2 a^{-2} +z^2 a^{-4} -7 z^2-2 a^5 z-2 a^3 z+a z+z a^{-1} -a^6-2 a^4-a^2+1
The A2 invariant Data:K11a228/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a228/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a251, K11a253,}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-4 16 8 -\frac{158}{3} -\frac{82}{3} -64 \frac{64}{3} -\frac{224}{3} 112 -\frac{32}{3} 128 \frac{632}{3} \frac{328}{3} \frac{11249}{30} \frac{3022}{15} \frac{4498}{45} -\frac{2033}{18} -\frac{271}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of K11a228. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
11           1-1
9          3 3
7         61 -5
5        93  6
3       106   -4
1      129    3
-1     1011     1
-3    811      -3
-5   510       5
-7  28        -6
-9 15         4
-11 2          -2
-131           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.