From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a232 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X10,5,11,6 X16,8,17,7 X22,9,1,10 X18,11,19,12 X2,14,3,13 X20,15,21,16 X6,18,7,17 X12,19,13,20 X8,21,9,22
Gauss code 1, -7, 2, -1, 3, -9, 4, -11, 5, -3, 6, -10, 7, -2, 8, -4, 9, -6, 10, -8, 11, -5
Dowker-Thistlethwaite code 4 14 10 16 22 18 2 20 6 12 8
A Braid Representative
A Morse Link Presentation K11a232 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a232/ThurstonBennequinNumber
Hyperbolic Volume 16.4523
A-Polynomial See Data:K11a232/A-polynomial

[edit Notes for K11a232's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 2

[edit Notes for K11a232's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-14 t^2+26 t-31+26 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6-4 z^4-z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 123, -2 }
Jones polynomial -q^4+4 q^3-8 q^2+13 q-17+20 q^{-1} -19 q^{-2} +17 q^{-3} -13 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +8 z^4+6 a^4 z^2-16 a^2 z^2-2 z^2 a^{-2} +11 z^2+2 a^4-5 a^2- a^{-2} +5
Kauffman polynomial (db, data sources) 2 a^2 z^{10}+2 z^{10}+7 a^3 z^9+12 a z^9+5 z^9 a^{-1} +11 a^4 z^8+15 a^2 z^8+4 z^8 a^{-2} +8 z^8+10 a^5 z^7-3 a^3 z^7-27 a z^7-13 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-21 a^4 z^6-56 a^2 z^6-14 z^6 a^{-2} -43 z^6+3 a^7 z^5-17 a^5 z^5-24 a^3 z^5+2 a z^5+3 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-5 a^6 z^4+18 a^4 z^4+58 a^2 z^4+15 z^4 a^{-2} +49 z^4-2 a^7 z^3+16 a^5 z^3+29 a^3 z^3+17 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} -a^8 z^2+2 a^6 z^2-8 a^4 z^2-29 a^2 z^2-5 z^2 a^{-2} -23 z^2-4 a^5 z-9 a^3 z-8 a z-4 z a^{-1} -z a^{-3} +2 a^4+5 a^2+ a^{-2} +5
The A2 invariant q^{20}-q^{18}+3 q^{16}-2 q^{14}-2 q^{12}+2 q^{10}-4 q^8+4 q^6-2 q^4+q^2+2-2 q^{-2} +4 q^{-4} - q^{-6} + q^{-10} - q^{-12}
The G2 invariant q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+8 q^{100}-17 q^{98}+27 q^{96}-36 q^{94}+35 q^{92}-24 q^{90}+2 q^{88}+34 q^{86}-69 q^{84}+102 q^{82}-125 q^{80}+113 q^{78}-69 q^{76}-18 q^{74}+134 q^{72}-233 q^{70}+303 q^{68}-286 q^{66}+170 q^{64}+31 q^{62}-264 q^{60}+441 q^{58}-476 q^{56}+329 q^{54}-59 q^{52}-238 q^{50}+451 q^{48}-459 q^{46}+263 q^{44}+53 q^{42}-355 q^{40}+479 q^{38}-373 q^{36}+46 q^{34}+338 q^{32}-602 q^{30}+642 q^{28}-417 q^{26}+7 q^{24}+423 q^{22}-723 q^{20}+769 q^{18}-561 q^{16}+159 q^{14}+279 q^{12}-582 q^{10}+674 q^8-505 q^6+172 q^4+194 q^2-455+489 q^{-2} -291 q^{-4} -46 q^{-6} +377 q^{-8} -528 q^{-10} +446 q^{-12} -151 q^{-14} -218 q^{-16} +509 q^{-18} -603 q^{-20} +468 q^{-22} -178 q^{-24} -151 q^{-26} +385 q^{-28} -448 q^{-30} +361 q^{-32} -175 q^{-34} -14 q^{-36} +139 q^{-38} -187 q^{-40} +156 q^{-42} -91 q^{-44} +29 q^{-46} +15 q^{-48} -32 q^{-50} +28 q^{-52} -19 q^{-54} +9 q^{-56} -3 q^{-58} + q^{-60}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-4 16 8 \frac{82}{3} \frac{110}{3} -64 -\frac{608}{3} -\frac{320}{3} -48 -\frac{32}{3} 128 -\frac{328}{3} -\frac{440}{3} \frac{9569}{30} \frac{6622}{15} -\frac{17342}{45} \frac{1759}{18} -\frac{4831}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a232. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
9           1-1
7          3 3
5         51 -4
3        83  5
1       95   -4
-1      118    3
-3     910     1
-5    810      -2
-7   59       4
-9  28        -6
-11 15         4
-13 2          -2
-151           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.