K11a237

From Knot Atlas
Jump to: navigation, search

K11a236.gif

K11a236

K11a238.gif

K11a238

Contents

K11a237.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a237 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X16,6,17,5 X18,8,19,7 X22,10,1,9 X20,12,21,11 X2,14,3,13 X12,16,13,15 X8,18,9,17 X6,20,7,19 X10,22,11,21
Gauss code 1, -7, 2, -1, 3, -10, 4, -9, 5, -11, 6, -8, 7, -2, 8, -3, 9, -4, 10, -6, 11, -5
Dowker-Thistlethwaite code 4 14 16 18 22 20 2 12 8 6 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a237 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{2,3\}
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a237/ThurstonBennequinNumber
Hyperbolic Volume 13.6547
A-Polynomial See Data:K11a237/A-polynomial

[edit Notes for K11a237's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 2
Rasmussen s-Invariant -4

[edit Notes for K11a237's four dimensional invariants]

Polynomial invariants

Alexander polynomial 8 t^2-23 t+31-23 t^{-1} +8 t^{-2}
Conway polynomial 8 z^4+9 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 93, 4 }
Jones polynomial -q^{13}+2 q^{12}-5 q^{11}+9 q^{10}-12 q^9+14 q^8-15 q^7+14 q^6-10 q^5+7 q^4-3 q^3+q^2
HOMFLY-PT polynomial (db, data sources) z^4 a^{-4} +3 z^4 a^{-6} +3 z^4 a^{-8} +z^4 a^{-10} +z^2 a^{-4} +5 z^2 a^{-6} +4 z^2 a^{-8} -z^2 a^{-12} +2 a^{-6} - a^{-12}
Kauffman polynomial (db, data sources) z^{10} a^{-10} +z^{10} a^{-12} +3 z^9 a^{-9} +5 z^9 a^{-11} +2 z^9 a^{-13} +6 z^8 a^{-8} +6 z^8 a^{-10} +2 z^8 a^{-12} +2 z^8 a^{-14} +7 z^7 a^{-7} +5 z^7 a^{-9} -7 z^7 a^{-11} -4 z^7 a^{-13} +z^7 a^{-15} +6 z^6 a^{-6} -5 z^6 a^{-8} -13 z^6 a^{-10} -10 z^6 a^{-12} -8 z^6 a^{-14} +3 z^5 a^{-5} -8 z^5 a^{-7} -21 z^5 a^{-9} -9 z^5 a^{-11} -4 z^5 a^{-13} -5 z^5 a^{-15} +z^4 a^{-4} -8 z^4 a^{-6} -2 z^4 a^{-8} +3 z^4 a^{-12} +10 z^4 a^{-14} -2 z^3 a^{-5} +4 z^3 a^{-7} +16 z^3 a^{-9} +12 z^3 a^{-11} +10 z^3 a^{-13} +8 z^3 a^{-15} -z^2 a^{-4} +7 z^2 a^{-6} +2 z^2 a^{-8} +2 z^2 a^{-10} +4 z^2 a^{-12} -4 z^2 a^{-14} -4 z a^{-9} -3 z a^{-11} -3 z a^{-13} -4 z a^{-15} -2 a^{-6} - a^{-12}
The A2 invariant Data:K11a237/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a237/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (9, 27)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
36 216 648 1658 254 7776 14064 2464 1880 7776 23328 59688 9144 \frac{1214893}{10} \frac{45482}{15} \frac{711746}{15} \frac{5363}{6} \frac{61933}{10}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=4 is the signature of K11a237. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
27           1-1
25          1 1
23         41 -3
21        51  4
19       74   -3
17      75    2
15     87     -1
13    67      -1
11   48       4
9  36        -3
7  4         4
513          -2
31           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=0 {\mathbb Z} {\mathbb Z}
r=1 {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=9 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=10 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=11 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a236.gif

K11a236

K11a238.gif

K11a238