From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a57 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X8493 X16,6,17,5 X2837 X20,9,21,10 X22,11,1,12 X18,13,19,14 X6,16,7,15 X12,17,13,18 X14,19,15,20 X10,21,11,22
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -10, 8, -3, 9, -7, 10, -5, 11, -6
Dowker-Thistlethwaite code 4 8 16 2 20 22 18 6 12 14 10
A Braid Representative
A Morse Link Presentation K11a57 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 4
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a57/ThurstonBennequinNumber
Hyperbolic Volume 14.7354
A-Polynomial See Data:K11a57/A-polynomial

[edit Notes for K11a57's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [2,4]
Rasmussen s-Invariant 2

[edit Notes for K11a57's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-12 t^2+20 t-23+20 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6-2 z^4+z^2+1
2nd Alexander ideal (db, data sources) \left\{t^2-t+1\right\}
Determinant and Signature { 99, -2 }
Jones polynomial -q^4+2 q^3-5 q^2+10 q-12+16 q^{-1} -16 q^{-2} +14 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +10 z^4+6 a^4 z^2-19 a^2 z^2-4 z^2 a^{-2} +18 z^2+3 a^4-10 a^2-4 a^{-2} +12
Kauffman polynomial (db, data sources) a^2 z^{10}+z^{10}+4 a^3 z^9+6 a z^9+2 z^9 a^{-1} +8 a^4 z^8+10 a^2 z^8+2 z^8 a^{-2} +4 z^8+9 a^5 z^7+4 a^3 z^7-9 a z^7-3 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-12 a^4 z^6-31 a^2 z^6-8 z^6 a^{-2} -21 z^6+3 a^7 z^5-16 a^5 z^5-29 a^3 z^5-14 a z^5-9 z^5 a^{-1} -5 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+6 a^4 z^4+30 a^2 z^4+11 z^4 a^{-2} +28 z^4-2 a^7 z^3+16 a^5 z^3+35 a^3 z^3+29 a z^3+20 z^3 a^{-1} +8 z^3 a^{-3} -a^8 z^2+3 a^6 z^2-2 a^4 z^2-22 a^2 z^2-8 z^2 a^{-2} -24 z^2-6 a^5 z-16 a^3 z-17 a z-11 z a^{-1} -4 z a^{-3} +3 a^4+10 a^2+4 a^{-2} +12
The A2 invariant q^{20}-q^{18}+3 q^{16}-q^{14}-q^{12}-6 q^8+q^6-3 q^4+4 q^2+5+2 q^{-2} +4 q^{-4} -2 q^{-6} - q^{-8} - q^{-10} - q^{-12}
The G2 invariant q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+9 q^{100}-19 q^{98}+29 q^{96}-38 q^{94}+35 q^{92}-22 q^{90}-5 q^{88}+49 q^{86}-87 q^{84}+115 q^{82}-119 q^{80}+82 q^{78}-16 q^{76}-81 q^{74}+178 q^{72}-232 q^{70}+223 q^{68}-133 q^{66}-4 q^{64}+156 q^{62}-252 q^{60}+268 q^{58}-177 q^{56}+20 q^{54}+136 q^{52}-227 q^{50}+204 q^{48}-65 q^{46}-111 q^{44}+242 q^{42}-274 q^{40}+170 q^{38}+19 q^{36}-243 q^{34}+375 q^{32}-397 q^{30}+265 q^{28}-43 q^{26}-210 q^{24}+377 q^{22}-414 q^{20}+315 q^{18}-126 q^{16}-99 q^{14}+262 q^{12}-302 q^{10}+229 q^8-54 q^6-119 q^4+242 q^2-219+99 q^{-2} +86 q^{-4} -233 q^{-6} +304 q^{-8} -242 q^{-10} +84 q^{-12} +106 q^{-14} -243 q^{-16} +304 q^{-18} -249 q^{-20} +121 q^{-22} +17 q^{-24} -131 q^{-26} +174 q^{-28} -164 q^{-30} +104 q^{-32} -36 q^{-34} -21 q^{-36} +51 q^{-38} -59 q^{-40} +45 q^{-42} -26 q^{-44} +8 q^{-46} +2 q^{-48} -9 q^{-50} +7 q^{-52} -6 q^{-54} +4 q^{-56} - q^{-58} + q^{-60}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a108, K11a139, K11a231,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a231,}

Vassiliev invariants

V2 and V3: (1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
4 24 8 \frac{14}{3} \frac{58}{3} 96 80 -64 24 \frac{32}{3} 288 \frac{56}{3} \frac{232}{3} \frac{19231}{30} \frac{1258}{15} \frac{13622}{45} \frac{929}{18} \frac{511}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a57. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
9           1-1
7          1 1
5         41 -3
3        61  5
1       64   -2
-1      106    4
-3     77     0
-5    79      -2
-7   57       2
-9  27        -5
-11 15         4
-13 2          -2
-151           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.