K11n163

From Knot Atlas
Jump to: navigation, search

K11n162.gif

K11n162

K11n164.gif

K11n164

Contents

K11n163.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n163 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X3,11,4,10 X5,12,6,13 X22,8,1,7 X9,16,10,17 X11,19,12,18 X8,14,9,13 X20,16,21,15 X17,4,18,5 X19,3,20,2 X14,22,15,21
Gauss code 1, 10, -2, 9, -3, -1, 4, -7, -5, 2, -6, 3, 7, -11, 8, 5, -9, 6, -10, -8, 11, -4
Dowker-Thistlethwaite code 6 -10 -12 22 -16 -18 8 20 -4 -2 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n163 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n163/ThurstonBennequinNumber
Hyperbolic Volume 16.1487
A-Polynomial See Data:K11n163/A-polynomial

[edit Notes for K11n163's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant -2

[edit Notes for K11n163's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^3-8 t^2+22 t-29+22 t^{-1} -8 t^{-2} + t^{-3}
Conway polynomial z^6-2 z^4-z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 91, 2 }
Jones polynomial 2 q^7-6 q^6+10 q^5-14 q^4+16 q^3-15 q^2+13 q-9+5 q^{-1} - q^{-2}
HOMFLY-PT polynomial (db, data sources) z^6 a^{-2} +2 z^4 a^{-2} -3 z^4 a^{-4} -z^4+2 z^2 a^{-2} -5 z^2 a^{-4} +2 z^2 a^{-6} + a^{-2} -2 a^{-4} + a^{-6} +1
Kauffman polynomial (db, data sources) 2 z^9 a^{-3} +2 z^9 a^{-5} +7 z^8 a^{-2} +10 z^8 a^{-4} +3 z^8 a^{-6} +9 z^7 a^{-1} +12 z^7 a^{-3} +4 z^7 a^{-5} +z^7 a^{-7} -5 z^6 a^{-2} -11 z^6 a^{-4} -z^6 a^{-6} +5 z^6+a z^5-15 z^5 a^{-1} -26 z^5 a^{-3} -5 z^5 a^{-5} +5 z^5 a^{-7} -9 z^4 a^{-2} -5 z^4 a^{-4} +z^4 a^{-6} +3 z^4 a^{-8} -6 z^4+4 z^3 a^{-1} +9 z^3 a^{-3} -2 z^3 a^{-5} -7 z^3 a^{-7} +5 z^2 a^{-2} +9 z^2 a^{-4} +z^2 a^{-6} -3 z^2 a^{-8} +z a^{-3} +3 z a^{-5} +2 z a^{-7} - a^{-2} -2 a^{-4} - a^{-6} +1
The A2 invariant Data:K11n163/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n163/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_105,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-4 -16 8 -\frac{14}{3} \frac{62}{3} 64 \frac{416}{3} \frac{224}{3} 48 -\frac{32}{3} 128 \frac{56}{3} -\frac{248}{3} \frac{14849}{30} \frac{2302}{15} \frac{5938}{45} \frac{415}{18} -\frac{991}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11n163. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123456χ
15         22
13        4 -4
11       62 4
9      84  -4
7     86   2
5    78    1
3   68     -2
1  48      4
-1 15       -4
-3 4        4
-51         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n162.gif

K11n162

K11n164.gif

K11n164