From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a35 at Knotilus!

Link Presentations

[edit Notes on L10a35's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,12,15,11 X20,15,5,16 X16,7,17,8 X18,9,19,10 X8,17,9,18 X10,19,11,20 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 5, -7, 6, -8, 3, -2, 10, -3, 4, -5, 7, -6, 8, -4}
A Braid Representative
A Morse Link Presentation L10a35 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^4-2 t(2)^3+t(2)^2-2 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{3/2}-3 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{10}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^7-3 z a^7-2 a^7 z^{-1} +2 z^5 a^5+8 z^3 a^5+10 z a^5+5 a^5 z^{-1} -z^7 a^3-5 z^5 a^3-9 z^3 a^3-8 z a^3-3 a^3 z^{-1} +z^5 a+3 z^3 a+z a (db)
Kauffman polynomial a^{10} z^4-2 a^{10} z^2+a^{10}+2 a^9 z^5-2 a^9 z^3+3 a^8 z^6-3 a^8 z^4+a^8 z^2+3 a^7 z^7-3 a^7 z^5+4 a^7 z^3-5 a^7 z+2 a^7 z^{-1} +2 a^6 z^8+a^6 z^6-7 a^6 z^4+10 a^6 z^2-5 a^6+a^5 z^9+3 a^5 z^7-12 a^5 z^5+18 a^5 z^3-15 a^5 z+5 a^5 z^{-1} +5 a^4 z^8-12 a^4 z^6+5 a^4 z^4+7 a^4 z^2-5 a^4+a^3 z^9+3 a^3 z^7-18 a^3 z^5+22 a^3 z^3-12 a^3 z+3 a^3 z^{-1} +3 a^2 z^8-9 a^2 z^6+5 a^2 z^4+a^2 z^2+3 a z^7-11 a z^5+10 a z^3-2 a z+z^6-3 z^4+z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
4          1-1
2         2 2
0        21 -1
-2       52  3
-4      54   -1
-6     53    2
-8    35     2
-10   45      -1
-12  13       2
-14 14        -3
-16 1         1
-181          -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.