L11a377

From Knot Atlas
Jump to: navigation, search

L11a376.gif

L11a376

L11a378.gif

L11a378

Contents

L11a377.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a377 at Knotilus!


Link Presentations

[edit Notes on L11a377's Link Presentations]

Planar diagram presentation X12,1,13,2 X14,4,15,3 X22,7,11,8 X8,11,9,12 X20,14,21,13 X16,6,17,5 X18,10,19,9 X4,16,5,15 X6,18,7,17 X10,20,1,19 X2,21,3,22
Gauss code {1, -11, 2, -8, 6, -9, 3, -4, 7, -10}, {4, -1, 5, -2, 8, -6, 9, -7, 10, -5, 11, -3}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a377 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^4 t(1)^4-t(2)^3 t(1)^4-2 t(2)^4 t(1)^3+5 t(2)^3 t(1)^3-4 t(2)^2 t(1)^3+t(2) t(1)^3+t(2)^4 t(1)^2-5 t(2)^3 t(1)^2+7 t(2)^2 t(1)^2-5 t(2) t(1)^2+t(1)^2+t(2)^3 t(1)-4 t(2)^2 t(1)+5 t(2) t(1)-2 t(1)-t(2)+1}{t(1)^2 t(2)^2} (db)
Jones polynomial q^{17/2}-3 q^{15/2}+6 q^{13/2}-10 q^{11/2}+13 q^{9/2}-15 q^{7/2}+14 q^{5/2}-13 q^{3/2}+9 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^9 a^{-3} +z^7 a^{-1} -7 z^7 a^{-3} +z^7 a^{-5} +5 z^5 a^{-1} -18 z^5 a^{-3} +5 z^5 a^{-5} +8 z^3 a^{-1} -20 z^3 a^{-3} +8 z^3 a^{-5} +5 z a^{-1} -8 z a^{-3} +4 z a^{-5} + a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial z^4 a^{-10} -z^2 a^{-10} +3 z^5 a^{-9} -3 z^3 a^{-9} +z a^{-9} +5 z^6 a^{-8} -5 z^4 a^{-8} +2 z^2 a^{-8} +6 z^7 a^{-7} -6 z^5 a^{-7} +z^3 a^{-7} +z a^{-7} +6 z^8 a^{-6} -8 z^6 a^{-6} +3 z^4 a^{-6} +5 z^9 a^{-5} -10 z^7 a^{-5} +11 z^5 a^{-5} -11 z^3 a^{-5} +4 z a^{-5} +2 z^{10} a^{-4} +2 z^8 a^{-4} -16 z^6 a^{-4} +16 z^4 a^{-4} -6 z^2 a^{-4} +9 z^9 a^{-3} -32 z^7 a^{-3} +40 z^5 a^{-3} -27 z^3 a^{-3} +9 z a^{-3} - a^{-3} z^{-1} +2 z^{10} a^{-2} -z^8 a^{-2} -15 z^6 a^{-2} +20 z^4 a^{-2} -7 z^2 a^{-2} + a^{-2} +4 z^9 a^{-1} +a z^7-15 z^7 a^{-1} -4 a z^5+16 z^5 a^{-1} +4 a z^3-8 z^3 a^{-1} -a z+4 z a^{-1} - a^{-1} z^{-1} +3 z^8-12 z^6+13 z^4-4 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         41 -3
12        62  4
10       74   -3
8      86    2
6     78     1
4    67      -1
2   48       4
0  25        -3
-2 14         3
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a376.gif

L11a376

L11a378.gif

L11a378