L11a407

From Knot Atlas
Jump to: navigation, search

L11a406.gif

L11a406

L11a408.gif

L11a408

Contents

L11a407.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a407 at Knotilus!


Link Presentations

[edit Notes on L11a407's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X22,14,11,13 X8,16,9,15 X14,8,15,7 X18,10,19,9 X20,18,21,17 X16,22,17,21 X10,20,5,19 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 5, -4, 6, -9}, {11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a407 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(1) t(3)^2 t(2)^2-4 t(3)^2 t(2)^2+t(1) t(2)^2-3 t(1) t(3) t(2)^2+4 t(3) t(2)^2-t(2)^2-3 t(1) t(3)^2 t(2)+4 t(3)^2 t(2)-4 t(1) t(2)+7 t(1) t(3) t(2)-7 t(3) t(2)+3 t(2)+t(1) t(3)^2-t(3)^2+4 t(1)-4 t(1) t(3)+3 t(3)-2}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial -q^8+4 q^7-8 q^6+13 q^5-17 q^4+19 q^3-18 q^2+16 q-10+7 q^{-1} -2 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -z^2 a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2-z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2-2 z^4-4 z^2-2 z^{-2} -3 (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +6 z^8 a^{-2} +10 z^8 a^{-4} +7 z^8 a^{-6} +3 z^8+2 a z^7+5 z^7 a^{-1} +4 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-7 z^6 a^{-2} -13 z^6 a^{-4} -7 z^6 a^{-6} +4 z^6 a^{-8} -4 z^6-4 a z^5-19 z^5 a^{-1} -17 z^5 a^{-3} -14 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4-8 z^4 a^{-2} -5 z^4 a^{-4} -2 z^4 a^{-6} -6 z^4 a^{-8} -3 z^4+14 z^3 a^{-1} +16 z^3 a^{-3} +8 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} +6 a^2 z^2+9 z^2 a^{-2} +9 z^2 a^{-4} +4 z^2 a^{-6} +2 z^2 a^{-8} +8 z^2+4 a z-6 z a^{-3} -2 z a^{-5} -4 a^2-3 a^{-2} - a^{-4} - a^{-6} -6-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         51 -4
11        83  5
9       95   -4
7      108    2
5     1011     1
3    68      -2
1   511       6
-1  25        -3
-3  5         5
-512          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a406.gif

L11a406

L11a408.gif

L11a408