L11a408

From Knot Atlas
Jump to: navigation, search

L11a407.gif

L11a407

L11a409.gif

L11a409

Contents

L11a408.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a408 at Knotilus!


Link Presentations

[edit Notes on L11a408's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,10,19,9 X14,8,15,7 X20,17,21,18 X16,21,17,22 X22,14,11,13 X10,16,5,15 X8,20,9,19 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 4, -9, 3, -8}, {11, -2, 7, -4, 8, -6, 5, -3, 9, -5, 6, -7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a408 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2+2 t(1) t(2)^2-3 t(1) t(3) t(2)^2+5 t(3) t(2)^2-2 t(2)^2-3 t(1) t(3)^2 t(2)+5 t(3)^2 t(2)-5 t(1) t(2)+8 t(1) t(3) t(2)-8 t(3) t(2)+3 t(2)+2 t(1) t(3)^2-2 t(3)^2+2 t(1)-5 t(1) t(3)+3 t(3)-1}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial -q^5+4 q^4-8 q^3+14 q^2-17 q+21-19 q^{-1} +17 q^{-2} -12 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} (db)
Signature 0 (db)
HOMFLY-PT polynomial a^6-3 z^2 a^4-2 a^4+3 z^4 a^2+4 z^2 a^2+a^2 z^{-2} +3 a^2-z^6-2 z^4-5 z^2-2 z^{-2} -4+2 z^4 a^{-2} +2 z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} -z^2 a^{-4} (db)
Kauffman polynomial a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+3 a^5 z^7-8 a^5 z^5+z^5 a^{-5} +7 a^5 z^3-z^3 a^{-5} -2 a^5 z+4 a^4 z^8-6 a^4 z^6+4 z^6 a^{-4} -2 a^4 z^4-6 z^4 a^{-4} +5 a^4 z^2+3 z^2 a^{-4} -a^4+3 a^3 z^9+3 a^3 z^7+7 z^7 a^{-3} -19 a^3 z^5-10 z^5 a^{-3} +18 a^3 z^3+4 z^3 a^{-3} -6 a^3 z+a^2 z^{10}+10 a^2 z^8+7 z^8 a^{-2} -20 a^2 z^6-5 z^6 a^{-2} +5 a^2 z^4-5 z^4 a^{-2} +6 a^2 z^2+6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -3 a^2-4 a^{-2} +7 a z^9+4 z^9 a^{-1} +7 z^7 a^{-1} -20 a z^5-20 z^5 a^{-1} +14 a z^3+8 z^3 a^{-1} +4 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +z^{10}+13 z^8-22 z^6+5 z^4+7 z^2+2 z^{-2} -6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          3 3
7         51 -4
5        93  6
3       107   -3
1      117    4
-1     911     2
-3    810      -2
-5   49       5
-7  38        -5
-9 15         4
-11 2          -2
-131           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a407.gif

L11a407

L11a409.gif

L11a409