L11a409

From Knot Atlas
Jump to: navigation, search

L11a408.gif

L11a408

L11a410.gif

L11a410

Contents

L11a409.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a409 at Knotilus!


Link Presentations

[edit Notes on L11a409's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X8,18,9,17 X14,8,15,7 X18,10,19,9 X10,12,5,11 X22,19,11,20 X20,15,21,16 X16,21,17,22 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 4, -3, 5, -6}, {6, -2, 11, -4, 8, -9, 3, -5, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a409 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^2 w^4-2 u v^2 w^3+2 u v^2 w^2-u v w^4+4 u v w^3-5 u v w^2+2 u v w-2 u w^3+4 u w^2-3 u w+u-v^2 w^4+3 v^2 w^3-4 v^2 w^2+2 v^2 w-2 v w^3+5 v w^2-4 v w+v-2 w^2+2 w-1}{\sqrt{u} v w^2} (db)
Jones polynomial q^7-3 q^6+7 q^5-11 q^4- q^{-4} +16 q^3+3 q^{-3} -16 q^2-7 q^{-2} +18 q+11 q^{-1} -14 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^8 a^{-2} -6 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-15 z^4 a^{-2} +4 z^4 a^{-4} +9 z^4-3 a^2 z^2-19 z^2 a^{-2} +6 z^2 a^{-4} +15 z^2-3 a^2-13 a^{-2} +4 a^{-4} +12-a^2 z^{-2} -5 a^{-2} z^{-2} +2 a^{-4} z^{-2} +4 z^{-2} (db)
Kauffman polynomial z^4 a^{-8} -z^2 a^{-8} +3 z^5 a^{-7} -2 z^3 a^{-7} +6 z^6 a^{-6} -7 z^4 a^{-6} +5 z^2 a^{-6} - a^{-6} +8 z^7 a^{-5} -10 z^5 a^{-5} +5 z^3 a^{-5} +9 z^8 a^{-4} -18 z^6 a^{-4} +21 z^4 a^{-4} -17 z^2 a^{-4} -2 a^{-4} z^{-2} +8 a^{-4} +5 z^9 a^{-3} +a^3 z^7+z^7 a^{-3} -4 a^3 z^5-26 z^5 a^{-3} +6 a^3 z^3+33 z^3 a^{-3} -4 a^3 z-18 z a^{-3} +a^3 z^{-1} +5 a^{-3} z^{-1} +z^{10} a^{-2} +3 a^2 z^8+16 z^8 a^{-2} -11 a^2 z^6-58 z^6 a^{-2} +13 a^2 z^4+72 z^4 a^{-2} -7 a^2 z^2-50 z^2 a^{-2} -a^2 z^{-2} -5 a^{-2} z^{-2} +3 a^2+20 a^{-2} +3 a z^9+8 z^9 a^{-1} -4 a z^7-12 z^7 a^{-1} -15 a z^5-24 z^5 a^{-1} +30 a z^3+50 z^3 a^{-1} -19 a z-33 z a^{-1} +5 a z^{-1} +9 a^{-1} z^{-1} +z^{10}+10 z^8-45 z^6+56 z^4-34 z^2-4 z^{-2} +15 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          31-2
11         4  4
9        73  -4
7       94   5
5      88    0
3     108     2
1    610      4
-1   58       -3
-3  26        4
-5 15         -4
-7 2          2
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a408.gif

L11a408

L11a410.gif

L11a410