From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a80 at Knotilus!

Link Presentations

[edit Notes on L11a80's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X18,14,19,13 X20,9,21,10 X14,20,15,19 X8,21,9,22 X10,16,11,15 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -8, 6, -9, 11, -2, 5, -7, 9, -3, 4, -5, 7, -6, 8, -4}
A Braid Representative
A Morse Link Presentation L11a80 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^5-2 t(2)^5-4 t(1) t(2)^4+8 t(2)^4+9 t(1) t(2)^3-11 t(2)^3-11 t(1) t(2)^2+9 t(2)^2+8 t(1) t(2)-4 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{11/2}-4 q^{9/2}+10 q^{7/2}-16 q^{5/2}+20 q^{3/2}-23 \sqrt{q}+\frac{22}{\sqrt{q}}-\frac{19}{q^{3/2}}+\frac{13}{q^{5/2}}-\frac{8}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +3 a z^5-4 z^5 a^{-1} +z^5 a^{-3} -3 a^3 z^3+8 a z^3-9 z^3 a^{-1} +2 z^3 a^{-3} +a^5 z-5 a^3 z+8 a z-9 z a^{-1} +3 z a^{-3} +a^5 z^{-1} -2 a^3 z^{-1} +3 a z^{-1} -3 a^{-1} z^{-1} + a^{-3} z^{-1} (db)
Kauffman polynomial z^4 a^{-6} +a^5 z^7-4 a^5 z^5+4 z^5 a^{-5} +6 a^5 z^3-4 a^5 z+a^5 z^{-1} +3 a^4 z^8-10 a^4 z^6+10 z^6 a^{-4} +11 a^4 z^4-8 z^4 a^{-4} -4 a^4 z^2+4 z^2 a^{-4} - a^{-4} +4 a^3 z^9-8 a^3 z^7+16 z^7 a^{-3} -4 a^3 z^5-23 z^5 a^{-3} +16 a^3 z^3+13 z^3 a^{-3} -9 a^3 z-4 z a^{-3} +2 a^3 z^{-1} + a^{-3} z^{-1} +2 a^2 z^{10}+8 a^2 z^8+16 z^8 a^{-2} -39 a^2 z^6-24 z^6 a^{-2} +42 a^2 z^4+6 z^4 a^{-2} -15 a^2 z^2+4 z^2 a^{-2} +2 a^2-2 a^{-2} +13 a z^9+9 z^9 a^{-1} -25 a z^7-6 a z^5-33 z^5 a^{-1} +27 a z^3+30 z^3 a^{-1} -15 a z-14 z a^{-1} +3 a z^{-1} +3 a^{-1} z^{-1} +2 z^{10}+21 z^8-63 z^6+46 z^4-11 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12           1-1
10          3 3
8         71 -6
6        93  6
4       117   -4
2      129    3
0     1112     1
-2    811      -3
-4   511       6
-6  38        -5
-8 16         5
-10 2          -2
-121           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.