L11n167

From Knot Atlas
Jump to: navigation, search

L11n166.gif

L11n166

L11n168.gif

L11n168

Contents

L11n167.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n167 at Knotilus!


Link Presentations

[edit Notes on L11n167's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X11,19,12,18 X22,19,7,20 X20,15,21,16 X16,21,17,22 X17,13,18,12 X6718 X4,13,5,14
Gauss code {1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, -5, 9, 11, -4, 7, -8, -9, 5, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n167 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1)^2 t(2)^4-t(1) t(2)^4-3 t(1)^2 t(2)^3+3 t(1) t(2)^3-t(2)^3+2 t(1)^2 t(2)^2-5 t(1) t(2)^2+2 t(2)^2-t(1)^2 t(2)+3 t(1) t(2)-3 t(2)-t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial -\frac{2}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{8}{q^{11/2}}-\frac{9}{q^{13/2}}+\frac{9}{q^{15/2}}-\frac{8}{q^{17/2}}+\frac{5}{q^{19/2}}-\frac{3}{q^{21/2}}+\frac{1}{q^{23/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^9 \left(-z^5\right)-3 a^9 z^3-2 a^9 z+a^7 z^7+5 a^7 z^5+9 a^7 z^3+7 a^7 z+a^7 z^{-1} -2 a^5 z^5-8 a^5 z^3-8 a^5 z-a^5 z^{-1} (db)
Kauffman polynomial -z^4 a^{14}+z^2 a^{14}-3 z^5 a^{13}+4 z^3 a^{13}-z a^{13}-4 z^6 a^{12}+4 z^4 a^{12}-4 z^7 a^{11}+4 z^5 a^{11}-2 z a^{11}-3 z^8 a^{10}+4 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}-z^9 a^9-2 z^7 a^9+5 z^5 a^9-3 z^3 a^9-4 z^8 a^8+10 z^6 a^8-11 z^4 a^8+6 z^2 a^8-z^9 a^7+2 z^7 a^7-5 z^5 a^7+11 z^3 a^7-7 z a^7+a^7 z^{-1} -z^8 a^6+2 z^6 a^6-2 z^4 a^6+4 z^2 a^6-a^6-3 z^5 a^5+10 z^3 a^5-8 z a^5+a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         22
-6        21-1
-8       41 3
-10      42  -2
-12     54   1
-14    44    0
-16   45     -1
-18  25      3
-20 13       -2
-22 2        2
-241         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n166.gif

L11n166

L11n168.gif

L11n168