L11n218

From Knot Atlas
Jump to: navigation, search

L11n217.gif

L11n217

L11n219.gif

L11n219

Contents

L11n218.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n218 at Knotilus!


Link Presentations

[edit Notes on L11n218's Link Presentations]

Planar diagram presentation X10,1,11,2 X8,9,1,10 X3,12,4,13 X22,16,9,15 X17,3,18,2 X21,4,22,5 X5,15,6,14 X13,21,14,20 X16,12,17,11 X19,7,20,6 X7,19,8,18
Gauss code {1, 5, -3, 6, -7, 10, -11, -2}, {2, -1, 9, 3, -8, 7, 4, -9, -5, 11, -10, 8, -6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n218 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} (db)
Jones polynomial q^{13/2}-q^{11/2}+q^{9/2}-q^{7/2}-q^{5/2}-\sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}} (db)
Signature 0 (db)
HOMFLY-PT polynomial z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^5 a^{-3} -5 z^3 a^{-3} -6 z a^{-3} -3 a^{-3} z^{-1} +a z+2 z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial -z^9 a^{-3} -z^9 a^{-5} -z^8 a^{-2} -2 z^8 a^{-4} -z^8 a^{-6} +7 z^7 a^{-3} +7 z^7 a^{-5} +7 z^6 a^{-2} +14 z^6 a^{-4} +7 z^6 a^{-6} -15 z^5 a^{-3} -15 z^5 a^{-5} -14 z^4 a^{-2} -28 z^4 a^{-4} -15 z^4 a^{-6} -z^4-a z^3+z^3 a^{-1} +15 z^3 a^{-3} +13 z^3 a^{-5} +10 z^2 a^{-2} +18 z^2 a^{-4} +11 z^2 a^{-6} +3 z^2+2 a z-3 z a^{-1} -11 z a^{-3} -6 z a^{-5} -3 a^{-2} -3 a^{-4} - a^{-6} +2 a^{-1} z^{-1} +3 a^{-3} z^{-1} + a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
14         1-1
12          0
10       11 0
8     11   0
6    1 1   2
4    21    1
2  21      1
0 121      0
-2          0
-41         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{2}
r=1 {\mathbb Z} {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n217.gif

L11n217

L11n219.gif

L11n219