L11n330

From Knot Atlas
Jump to: navigation, search

L11n329.gif

L11n329

L11n331.gif

L11n331

Contents

L11n330.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n330 at Knotilus!


Link Presentations

[edit Notes on L11n330's Link Presentations]

Planar diagram presentation X6172 X5,14,6,15 X3849 X2,16,3,15 X16,7,17,8 X13,18,14,19 X9,13,10,22 X11,21,12,20 X19,5,20,12 X21,11,22,10 X17,1,18,4
Gauss code {1, -4, -3, 11}, {-2, -1, 5, 3, -7, 10, -8, 9}, {-6, 2, 4, -5, -11, 6, -9, 8, -10, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n330 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^2-2 u v^2 w+u v w^3-2 u v w^2+u v w-u w^3+u w^2+v^3 (-w)+v^3-v^2 w^2+2 v^2 w-v^2+2 v w^2-v w}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial 2 q^4-2 q^3+4 q^2-5 q+7-5 q^{-1} +5 q^{-2} -3 q^{-3} +2 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial a^4 \left(-z^2\right)+ a^{-4} z^{-2} -a^4+2 a^{-4} +a^2 z^4+2 a^2 z^2-3 z^2 a^{-2} -2 a^{-2} z^{-2} +2 a^2-5 a^{-2} +z^4+z^2+ z^{-2} +2 (db)
Kauffman polynomial a^5 z^5-3 a^5 z^3+a^5 z+2 a^4 z^6-6 a^4 z^4+3 z^4 a^{-4} +3 a^4 z^2-10 z^2 a^{-4} - a^{-4} z^{-2} -a^4+6 a^{-4} +2 a^3 z^7+z^7 a^{-3} -5 a^3 z^5-3 z^5 a^{-3} +a^3 z^3+4 z^3 a^{-3} +a^3 z-5 z a^{-3} +2 a^{-3} z^{-1} +2 a^2 z^8+2 z^8 a^{-2} -7 a^2 z^6-11 z^6 a^{-2} +9 a^2 z^4+27 z^4 a^{-2} -4 a^2 z^2-30 z^2 a^{-2} -2 a^{-2} z^{-2} +13 a^{-2} +a z^9+z^9 a^{-1} -2 a z^7-3 z^7 a^{-1} -2 a z^5+z^5 a^{-1} +9 a z^3+9 z^3 a^{-1} -3 a z-8 z a^{-1} +2 a^{-1} z^{-1} +4 z^8-20 z^6+39 z^4-27 z^2- z^{-2} +9 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
9         22
7        110
5       31 2
3      21  -1
1     53   2
-1    35    2
-3   22     0
-5  13      2
-7 12       -1
-9 1        1
-111         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n329.gif

L11n329

L11n331.gif

L11n331