K11a24: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Hoste-Thistlethwaite Knot Page| |
{{Hoste-Thistlethwaite Knot Page| |
||
n = 11 | |
n = 11 | |
||
| Line 7: | Line 16: | ||
k = 24 | |
k = 24 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-7,4,-2,5,-11,6,-3,7,-10,8,-6,9,-5,10,-8,11,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-7,4,-2,5,-11,6,-3,7,-10,8,-6,9,-5,10,-8,11,-9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
same_alexander = [[K11a26]], [[K11a315]], | |
same_alexander = [[K11a26]], [[K11a315]], | |
||
same_jones = [[K11a26]], [[K11a315]], | |
same_jones = [[K11a26]], [[K11a315]], | |
||
| Line 31: | Line 46: | ||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> | |
</table> | |
||
coloured_jones_2 = | |
coloured_jones_2 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_3 = | |
coloured_jones_3 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_4 = | |
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
| Line 43: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 24]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 24]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 59: | Line 74: | ||
-5, 10, -8, 11, -9]</nowiki></pre></td></tr> |
-5, 10, -8, 11, -9]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 24]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 24]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, -3, -3, 2, -3, 2, -1, 2, -3, -3, 2, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 24]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a24_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 24]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a24_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 24]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 24]][t]</nowiki></pre></td></tr> |
||
Latest revision as of 01:49, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X16,11,17,12 X6,13,7,14 X20,15,21,16 X22,18,1,17 X14,19,15,20 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -3, 7, -10, 8, -6, 9, -5, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 12 2 18 16 6 20 22 14 10 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+18 t^2-33 t+41-33 t^{-1} +18 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+2 z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 157, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+22 q^2-25 q+26-22 q^{-1} +17 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-9 z^2 a^{-2} +2 z^2 a^{-4} +12 z^2-2 a^2-4 a^{-2} + a^{-4} +6 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+8 a z^9+14 z^9 a^{-1} +6 z^9 a^{-3} +12 a^2 z^8+18 z^8 a^{-2} +7 z^8 a^{-4} +23 z^8+9 a^3 z^7+2 a z^7-12 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-19 a^2 z^6-50 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -58 z^6+a^5 z^5-13 a^3 z^5-26 a z^5-24 z^5 a^{-1} -21 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+15 a^2 z^4+42 z^4 a^{-2} +9 z^4 a^{-4} -2 z^4 a^{-6} +50 z^4-a^5 z^3+9 a^3 z^3+25 a z^3+30 z^3 a^{-1} +22 z^3 a^{-3} +7 z^3 a^{-5} +a^4 z^2-8 a^2 z^2-18 z^2 a^{-2} -3 z^2 a^{-4} +z^2 a^{-6} -23 z^2-3 a^3 z-8 a z-10 z a^{-1} -7 z a^{-3} -2 z a^{-5} +2 a^2+4 a^{-2} + a^{-4} +6 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+2 q^{12}-4 q^{10}+2 q^8+q^6-3 q^4+7 q^2-3+5 q^{-2} - q^{-4} -2 q^{-6} +3 q^{-8} -5 q^{-10} +2 q^{-12} - q^{-16} + q^{-18} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+17 q^{72}-19 q^{70}+12 q^{68}+11 q^{66}-46 q^{64}+94 q^{62}-139 q^{60}+154 q^{58}-123 q^{56}+20 q^{54}+160 q^{52}-369 q^{50}+543 q^{48}-584 q^{46}+408 q^{44}-30 q^{42}-482 q^{40}+949 q^{38}-1167 q^{36}+1001 q^{34}-454 q^{32}-314 q^{30}+1007 q^{28}-1337 q^{26}+1155 q^{24}-520 q^{22}-297 q^{20}+930 q^{18}-1100 q^{16}+723 q^{14}+43 q^{12}-830 q^{10}+1288 q^8-1170 q^6+494 q^4+492 q^2-1389+1846 q^{-2} -1655 q^{-4} +877 q^{-6} +226 q^{-8} -1251 q^{-10} +1840 q^{-12} -1780 q^{-14} +1119 q^{-16} -121 q^{-18} -823 q^{-20} +1338 q^{-22} -1252 q^{-24} +639 q^{-26} +208 q^{-28} -899 q^{-30} +1117 q^{-32} -782 q^{-34} +40 q^{-36} +763 q^{-38} -1275 q^{-40} +1280 q^{-42} -790 q^{-44} +9 q^{-46} +733 q^{-48} -1173 q^{-50} +1190 q^{-52} -823 q^{-54} +270 q^{-56} +253 q^{-58} -591 q^{-60} +671 q^{-62} -539 q^{-64} +300 q^{-66} -52 q^{-68} -120 q^{-70} +194 q^{-72} -188 q^{-74} +134 q^{-76} -66 q^{-78} +16 q^{-80} +15 q^{-82} -26 q^{-84} +22 q^{-86} -16 q^{-88} +8 q^{-90} -3 q^{-92} + q^{-94} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a24"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+18 t^2-33 t+41-33 t^{-1} +18 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+2 z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 157, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+22 q^2-25 q+26-22 q^{-1} +17 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-9 z^2 a^{-2} +2 z^2 a^{-4} +12 z^2-2 a^2-4 a^{-2} + a^{-4} +6 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+8 a z^9+14 z^9 a^{-1} +6 z^9 a^{-3} +12 a^2 z^8+18 z^8 a^{-2} +7 z^8 a^{-4} +23 z^8+9 a^3 z^7+2 a z^7-12 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-19 a^2 z^6-50 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -58 z^6+a^5 z^5-13 a^3 z^5-26 a z^5-24 z^5 a^{-1} -21 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+15 a^2 z^4+42 z^4 a^{-2} +9 z^4 a^{-4} -2 z^4 a^{-6} +50 z^4-a^5 z^3+9 a^3 z^3+25 a z^3+30 z^3 a^{-1} +22 z^3 a^{-3} +7 z^3 a^{-5} +a^4 z^2-8 a^2 z^2-18 z^2 a^{-2} -3 z^2 a^{-4} +z^2 a^{-6} -23 z^2-3 a^3 z-8 a z-10 z a^{-1} -7 z a^{-3} -2 z a^{-5} +2 a^2+4 a^{-2} + a^{-4} +6 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a26, K11a315,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a26, K11a315,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a24"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+18 t^2-33 t+41-33 t^{-1} +18 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+22 q^2-25 q+26-22 q^{-1} +17 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a26, K11a315,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a26, K11a315,} |
Vassiliev invariants
| V2 and V3: | (1, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



