Invariants from Braid Theory: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 6: Line 6:


<!--$$?BraidLength$$-->
<!--$$?BraidLength$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=2|s=BraidLength}}
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.
{{Help2}}
<!--END-->
<!--END-->


Line 11: Line 15:


<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=3}}
K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki>{11, 11}</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 16: Line 25:


<!--$$?BraidIndex$$-->
<!--$$?BraidIndex$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=4|s=BraidIndex}}
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
{{HelpAndAbout2|n=5|s=BraidIndex}}
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
<!--END-->
<!--END-->


Line 21: Line 36:


<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=6}}
K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>{4, 5}</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Graphics1|n=7}}
Show[BraidPlot[BR[K]]]
{{Graphics2|n=7|imagename=Invariants_from_Braid_Theory_Out_7.gif}}
<!--END-->
<!--END-->

Revision as of 21:02, 24 August 2005


The ``braid length`` of a knot or a link is the smallest number of crossings in a braid whose closure is . KnotTheory` has some braid lengths preloaded:

(For In[1] see Setup)

In[2]:= ?BraidLength

BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.

Note that the braid length of is simply the length of the minimum braid representing (see Braid Representatives):

In[3]:=

K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}

Out[3]=
{11, 11}

The ``braid index`` of a knot or a link is the smallest number of strands in a braid whose closure is . KnotTheory` has some braid indices preloaded:

In[4]:= ?BraidIndex

BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.

In[5]:= BraidIndex::about

The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Of the 250 knots with up to 10 crossings, only 10_136 has braid index smaller than the width of its minimum braid:

In[6]:=

K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}

Out[6]=
{4, 5}
In[7]:=

Show[BraidPlot[BR[K]]]

Invariants from Braid Theory Out 7.gif
Out[7]= -Graphics-