"Rubberband" Brunnian Links: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(New page: {{Manual TOC Sidebar}} =="Rubberband" Brunnian Links== A "Rubberband" Brunnian link is obtained by connecting unknots in a closed chain as illustrated in the diagram of the 10-component l...)
 
No edit summary
Line 20: Line 20:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 1 |
n = 2 |
in = <nowiki>Subscript[K, 0] =
in = <nowiki>K0 =
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13],
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13],
X[6, 13, 9, 15], X[10, 0, 16, 4], X[11, 4, 17, 8], X[14, 7, 19, 3],
X[6, 13, 9, 15], X[10, 0, 16, 4], X[11, 4, 17, 8], X[14, 7, 19, 3],
Line 32: Line 32:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 2 |
n = 3 |
in = <nowiki>RubberBandBrunnian[n_] :=
in = <nowiki>RubberBandBrunnian[n_] :=
Join @@ Table[
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16
Subscript[K, 0] /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16
n -> 0, 16 n + 1 -> 1, 16 n + 2 -> 2, 16 n + 3 -> 3}</nowiki>}}
n -> 0, 16 n + 1 -> 1, 16 n + 2 -> 2, 16 n + 3 -> 3}</nowiki>}}
<!--END-->
<!--END-->
Line 46: Line 45:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 3 |
n = 4 |
in = <nowiki>RBB3=RubberBandBrunnian[3];RBB4=RubberBandBrunnian[4];RBB5=RubberBandBrunnian[5];</nowiki>}}
in = <nowiki>RBB3=RubberBandBrunnian[3];
RBB4=RubberBandBrunnian[4];
RBB5=RubberBandBrunnian[5];</nowiki>}}
<!--END-->
<!--END-->


Line 54: Line 55:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 4 |
n = 5 |
in = <nowiki>DrawMorseLink/@{RBB3,RBB4,RBB5}</nowiki> |
in = <nowiki>DrawMorseLink/@{RBB3,RBB4,RBB5}</nowiki> |
out= <nowiki>{-Graphics-, -Graphics-, -Graphics-}</nowiki>}}
out= <nowiki>{-Graphics-, -Graphics-, -Graphics-}</nowiki>}}
Line 62: Line 63:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 5 |
n = 6 |
in = <nowiki>RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}</nowiki> |
in = <nowiki>RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}</nowiki> |
out= <nowiki> 2 3 4 5 7 8 9 10
out= <nowiki> 2 3 4 5 7 8 9 10
Line 100: Line 101:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 6 |
n = 7 |
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}}
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}}
<!--END-->
<!--END-->
Line 107: Line 108:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 7 |
n = 8 |
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> |
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> |
out= <nowiki> 6 3
out= <nowiki> 1/4 P[1, 10] P[5, 12]
-((Sqrt[q] SubLink[PD[q P[1, 12] P[5, 10] + -----------------,
-(q (1 + q) )</nowiki>}}
1/4
q
1/4 P[2, 12] P[6, 14]
q P[2, 14] P[6, 12] + -----------------,
1/4
q
1/4 P[5, 11] P[8, 13]
q P[5, 13] P[8, 11] + -----------------,
1/4
q
1/4 P[6, 13] P[9, 15]
q P[6, 15] P[9, 13] + -----------------,
1/4
q
1/4 P[0, 10] P[4, 16]
q P[0, 16] P[4, 10] + -----------------,
1/4
q
1/4 P[4, 11] P[8, 17]
q P[4, 17] P[8, 11] + -----------------,
1/4
q
P[3, 19] P[7, 14] 1/4
----------------- + q P[3, 14] P[7, 19],
1/4
q
P[7, 18] P[9, 15] 1/4
----------------- + q P[7, 15] P[9, 18],
1/4
q
1/4 P[17, 26] P[21, 28]
q P[17, 28] P[21, 26] + -------------------,
1/4
q
1/4 P[18, 28] P[22, 30]
q P[18, 30] P[22, 28] + -------------------,
1/4
q
1/4 P[21, 27] P[24, 29]
q P[21, 29] P[24, 27] + -------------------,
1/4
q
1/4 P[22, 29] P[25, 31]
q P[22, 31] P[25, 29] + -------------------,
1/4
q
1/4 P[16, 26] P[20, 32]
q P[16, 32] P[20, 26] + -------------------,
1/4
q
1/4 P[20, 27] P[24, 33]
q P[20, 33] P[24, 27] + -------------------,
1/4
q
P[19, 35] P[23, 30] 1/4
------------------- + q P[19, 30] P[23, 35],
1/4
q
P[23, 34] P[25, 31] 1/4
------------------- + q P[23, 31] P[25, 34],
1/4
q
1/4 P[33, 42] P[37, 44]
q P[33, 44] P[37, 42] + -------------------,
1/4
q
1/4 P[34, 44] P[38, 46]
q P[34, 46] P[38, 44] + -------------------,
1/4
q
1/4 P[37, 43] P[40, 45]
q P[37, 45] P[40, 43] + -------------------,
1/4
q
1/4 P[38, 45] P[41, 47]
q P[38, 47] P[41, 45] + -------------------,
1/4
q
1/4 P[32, 42] P[36, 48]
q P[32, 48] P[36, 42] + -------------------,
1/4
q
1/4 P[36, 43] P[40, 49]
q P[36, 49] P[40, 43] + -------------------,
1/4
q
P[35, 51] P[39, 46] 1/4
------------------- + q P[35, 46] P[39, 51],
1/4
q
P[39, 50] P[41, 47] 1/4
------------------- + q P[39, 47] P[41, 50],
1/4
q
1/4 P[49, 58] P[53, 60]
q P[49, 60] P[53, 58] + -------------------,
1/4
q
1/4 P[50, 60] P[54, 62]
q P[50, 62] P[54, 60] + -------------------,
1/4
q
1/4 P[53, 59] P[56, 61]
q P[53, 61] P[56, 59] + -------------------,
1/4
q
1/4 P[54, 61] P[57, 63]
q P[54, 63] P[57, 61] + -------------------,
1/4
q
1/4 P[48, 58] P[52, 64]
q P[48, 64] P[52, 58] + -------------------,
1/4
q
1/4 P[52, 59] P[56, 65]
q P[52, 65] P[56, 59] + -------------------,
1/4
q
P[51, 67] P[55, 62] 1/4
------------------- + q P[51, 62] P[55, 67],
1/4
q
P[55, 66] P[57, 63] 1/4
------------------- + q P[55, 63] P[57, 66],
1/4
q
1/4 P[65, 74] P[69, 76]
q P[65, 76] P[69, 74] + -------------------,
1/4
q
1/4 P[66, 76] P[70, 78]
q P[66, 78] P[70, 76] + -------------------,
1/4
q
1/4 P[69, 75] P[72, 77]
q P[69, 77] P[72, 75] + -------------------,
1/4
q
1/4 P[70, 77] P[73, 79]
q P[70, 79] P[73, 77] + -------------------,
1/4
q
P[0, 68] P[64, 74] 1/4
------------------ + q P[0, 64] P[68, 74],
1/4
q
P[1, 72] P[68, 75] 1/4
------------------ + q P[1, 68] P[72, 75],
1/4
q
1/4 P[3, 67] P[71, 78]
q P[3, 71] P[67, 78] + ------------------,
1/4
q
1/4 P[2, 71] P[73, 79]
q P[2, 73] P[71, 79] + ------------------], {1, 2, 3, 4}]) /
1/4
q
(1 + q))</nowiki>}}
<!--END-->
<!--END-->


Line 124: Line 324:
((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) **
((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) **
BR[n, {1 - n, 1 - n}]
BR[n, {1 - n, 1 - n}]
]$$--> <!--END-->
]$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 9 |
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]];
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]];
BrunnianBraid[2] = BR[2, {1, 1}];
BrunnianBraid[n_] /; n > 2 := Module[
{b0},
b0 = BrunnianBraid[n - 1];
((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) **
BR[n, {1 - n, 1 - n}]
]</nowiki>}}
<!--END-->


<!--$$DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
<!--$$DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
Line 133: Line 346:
k == Abs[j1] + 1, DeleteStrand[k - 1, {js}],
k == Abs[j1] + 1, DeleteStrand[k - 1, {js}],
k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}]
k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}]
]$$--> <!--END-->
]$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 10 |
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
DeleteStrand[k_, {}] = {};
DeleteStrand[k_, {j1_, js___}] := Which[
k < Abs[j1], {j1 - Sign[j1]}~Join~DeleteStrand[k, {js}],
k == Abs[j1], DeleteStrand[k + 1, {js}],
k == Abs[j1] + 1, DeleteStrand[k - 1, {js}],
k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}]
]</nowiki>}}
<!--END-->


Testing for the Brunnian braid with four strands, we get:
Testing for the Brunnian braid with four strands, we get:


<!--$$(b = BrunnianBraid[4]) // BraidPlot $$--> <!--END-->
<!--$$(b = BrunnianBraid[4]) // BraidPlot $$-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
n = 11 |
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> |
img= User_IvaH/Examples_Out_11.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->


<!--$$Jones[b][q]$$--> <!--END-->
<!--$$Jones[b][q]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 12 |
in = <nowiki>Jones[b][q]</nowiki> |
out= <nowiki> -(11/2) 4 6 5 5 1 3/2
-q + ---- - ---- + ---- - ---- - ------- - Sqrt[q] - 5 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2 7/2 9/2 11/2
5 q - 6 q + 4 q - q</nowiki>}}
<!--END-->


<!--$$(bb = DeleteStrand[4, b]) // BraidPlot$$--> <!--END-->
<!--$$(bb = DeleteStrand[4, b]) // BraidPlot$$-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
n = 13 |
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> |
img= User_IvaH/Examples_Out_13.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->


<!--$$Jones[#][q] & /@ {bb, BR[3, {}]}$$--> <!--END-->
<!--$$Jones[#][q] & /@ {bb, BR[3, {}]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 14 |
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> |
out= <nowiki> 1 1
{2 + - + q, 2 + - + q}
q q</nowiki>}}
<!--END-->

Revision as of 15:09, 22 September 2007


"Rubberband" Brunnian Links

A "Rubberband" Brunnian link is obtained by connecting unknots in a closed chain as illustrated in the diagram of the 10-component link, where the last knot gets connected to the first one.

The Rubberband link with 10 components Brunnian Link Example.PNG

If we number the strands in one section of the link as shown and proceed with numbering each following section in the same manner, we can get its PD form. The PD of any "Rubberband" link can be generated in this way by varying the desired number of components:

(For In[1] see Setup)

In[2]:= K0 = PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13], X[6, 13, 9, 15], X[10, 0, 16, 4], X[11, 4, 17, 8], X[14, 7, 19, 3], X[15, 9, 18, 7]];
In[3]:= RubberBandBrunnian[n_] := Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16 n -> 0, 16 n + 1 -> 1, 16 n + 2 -> 2, 16 n + 3 -> 3}

For instance, let us draw the links with three, four, and five components and compute their Jones polynomials:

In[4]:= RBB3=RubberBandBrunnian[3]; RBB4=RubberBandBrunnian[4]; RBB5=RubberBandBrunnian[5];


In[5]:= DrawMorseLink/@{RBB3,RBB4,RBB5}
Out[5]= {-Graphics-, -Graphics-, -Graphics-}
In[6]:= RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}
Out[6]= 2 3 4 5 7 8 9 10 {-q + 5 q - 11 q + 14 q - 10 q + 11 q - 18 q + 24 q - 18 q + 11 13 14 15 16 17 11 q - 10 q + 14 q - 11 q + 5 q - q , 3/2 5/2 7/2 9/2 11/2 13/2 15/2 -q + 7 q - 24 q + 49 q - 56 q + 18 q + 51 q - 17/2 19/2 21/2 23/2 25/2 111 q + 131 q - 100 q + 32 q + 32 q - 27/2 29/2 31/2 33/2 35/2 37/2 100 q + 131 q - 111 q + 51 q + 18 q - 56 q + 39/2 41/2 43/2 45/2 49 q - 24 q + 7 q - q , 2 3 4 5 6 7 8 9 -q + 9 q - 40 q + 110 q - 189 q + 167 q + 57 q - 414 q + 10 11 12 13 14 15 660 q - 581 q + 189 q + 305 q - 672 q + 816 q - 16 17 18 19 20 21 22 672 q + 305 q + 189 q - 581 q + 660 q - 414 q + 57 q + 23 24 25 26 27 28 167 q - 189 q + 110 q - 40 q + 9 q - q }

We can also check that when one component is removed the remaining link is trivial:

In[7]:= S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];
In[8]:= J=Factor[Jones[S][q]]
Out[8]= 1/4 P[1, 10] P[5, 12] -((Sqrt[q] SubLink[PD[q P[1, 12] P[5, 10] + -----------------, 1/4 q 1/4 P[2, 12] P[6, 14] q P[2, 14] P[6, 12] + -----------------, 1/4 q 1/4 P[5, 11] P[8, 13] q P[5, 13] P[8, 11] + -----------------, 1/4 q 1/4 P[6, 13] P[9, 15] q P[6, 15] P[9, 13] + -----------------, 1/4 q 1/4 P[0, 10] P[4, 16] q P[0, 16] P[4, 10] + -----------------, 1/4 q 1/4 P[4, 11] P[8, 17] q P[4, 17] P[8, 11] + -----------------, 1/4 q P[3, 19] P[7, 14] 1/4 ----------------- + q P[3, 14] P[7, 19], 1/4 q P[7, 18] P[9, 15] 1/4 ----------------- + q P[7, 15] P[9, 18], 1/4 q 1/4 P[17, 26] P[21, 28] q P[17, 28] P[21, 26] + -------------------, 1/4 q 1/4 P[18, 28] P[22, 30] q P[18, 30] P[22, 28] + -------------------, 1/4 q 1/4 P[21, 27] P[24, 29] q P[21, 29] P[24, 27] + -------------------, 1/4 q 1/4 P[22, 29] P[25, 31] q P[22, 31] P[25, 29] + -------------------, 1/4 q 1/4 P[16, 26] P[20, 32] q P[16, 32] P[20, 26] + -------------------, 1/4 q 1/4 P[20, 27] P[24, 33] q P[20, 33] P[24, 27] + -------------------, 1/4 q P[19, 35] P[23, 30] 1/4 ------------------- + q P[19, 30] P[23, 35], 1/4 q P[23, 34] P[25, 31] 1/4 ------------------- + q P[23, 31] P[25, 34], 1/4 q 1/4 P[33, 42] P[37, 44] q P[33, 44] P[37, 42] + -------------------, 1/4 q 1/4 P[34, 44] P[38, 46] q P[34, 46] P[38, 44] + -------------------, 1/4 q 1/4 P[37, 43] P[40, 45] q P[37, 45] P[40, 43] + -------------------, 1/4 q 1/4 P[38, 45] P[41, 47] q P[38, 47] P[41, 45] + -------------------, 1/4 q 1/4 P[32, 42] P[36, 48] q P[32, 48] P[36, 42] + -------------------, 1/4 q 1/4 P[36, 43] P[40, 49] q P[36, 49] P[40, 43] + -------------------, 1/4 q P[35, 51] P[39, 46] 1/4 ------------------- + q P[35, 46] P[39, 51], 1/4 q P[39, 50] P[41, 47] 1/4 ------------------- + q P[39, 47] P[41, 50], 1/4 q 1/4 P[49, 58] P[53, 60] q P[49, 60] P[53, 58] + -------------------, 1/4 q 1/4 P[50, 60] P[54, 62] q P[50, 62] P[54, 60] + -------------------, 1/4 q 1/4 P[53, 59] P[56, 61] q P[53, 61] P[56, 59] + -------------------, 1/4 q 1/4 P[54, 61] P[57, 63] q P[54, 63] P[57, 61] + -------------------, 1/4 q 1/4 P[48, 58] P[52, 64] q P[48, 64] P[52, 58] + -------------------, 1/4 q 1/4 P[52, 59] P[56, 65] q P[52, 65] P[56, 59] + -------------------, 1/4 q P[51, 67] P[55, 62] 1/4 ------------------- + q P[51, 62] P[55, 67], 1/4 q P[55, 66] P[57, 63] 1/4 ------------------- + q P[55, 63] P[57, 66], 1/4 q 1/4 P[65, 74] P[69, 76] q P[65, 76] P[69, 74] + -------------------, 1/4 q 1/4 P[66, 76] P[70, 78] q P[66, 78] P[70, 76] + -------------------, 1/4 q 1/4 P[69, 75] P[72, 77] q P[69, 77] P[72, 75] + -------------------, 1/4 q 1/4 P[70, 77] P[73, 79] q P[70, 79] P[73, 77] + -------------------, 1/4 q P[0, 68] P[64, 74] 1/4 ------------------ + q P[0, 64] P[68, 74], 1/4 q P[1, 72] P[68, 75] 1/4 ------------------ + q P[1, 68] P[72, 75], 1/4 q 1/4 P[3, 67] P[71, 78] q P[3, 71] P[67, 78] + ------------------, 1/4 q 1/4 P[2, 71] P[73, 79] q P[2, 73] P[71, 79] + ------------------], {1, 2, 3, 4}]) / 1/4 q (1 + q))

Brunnian Braids

Similarly, in the case of Brunnian braids, removing one strand gives us a trivial braid. We can verify that using the following two programs. The first one constructs a Brunnian braid while the second one removes a selected strand:

In[9]:= BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]]; BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]]; BrunnianBraid[2] = BR[2, {1, 1}]; BrunnianBraid[n_] /; n > 2 := Module[ {b0}, b0 = BrunnianBraid[n - 1]; ((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) ** BR[n, {1 - n, 1 - n}] ]
In[10]:= DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]]; DeleteStrand[k_, {}] = {}; DeleteStrand[k_, {j1_, js___}] := Which[ k < Abs[j1], {j1 - Sign[j1]}~Join~DeleteStrand[k, {js}], k == Abs[j1], DeleteStrand[k + 1, {js}], k == Abs[j1] + 1, DeleteStrand[k - 1, {js}], k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}] ]

Testing for the Brunnian braid with four strands, we get:

In[11]:= (b = BrunnianBraid[4]) // BraidPlot
File:User IvaH/Examples Out 11.gif
Out[11]= -Graphics-
In[12]:= Jones[b][q]
Out[12]= -(11/2) 4 6 5 5 1 3/2 -q + ---- - ---- + ---- - ---- - ------- - Sqrt[q] - 5 q + 9/2 7/2 5/2 3/2 Sqrt[q] q q q q 5/2 7/2 9/2 11/2 5 q - 6 q + 4 q - q
In[13]:= (bb = DeleteStrand[4, b]) // BraidPlot
File:User IvaH/Examples Out 13.gif
Out[13]= -Graphics-
In[14]:= Jones[#][q] & /@ {bb, BR[3, {}]}
Out[14]= 1 1 {2 + - + q, 2 + - + q} q q