"Rubberband" Brunnian Links: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 20: | Line 20: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 1 | |
||
in = <nowiki>K0 = |
in = <nowiki>K0 = |
||
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13], |
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13], |
||
Line 32: | Line 32: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 2 | |
||
in = <nowiki>RubberBandBrunnian[n_] := |
in = <nowiki>RubberBandBrunnian[n_] := |
||
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16 |
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16 |
||
Line 45: | Line 45: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 3 | |
||
in = <nowiki>RBB3=RubberBandBrunnian[3]; |
in = <nowiki>RBB3=RubberBandBrunnian[3]; |
||
RBB4=RubberBandBrunnian[4]; |
RBB4=RubberBandBrunnian[4]; |
||
Line 55: | Line 55: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 4 | |
||
in = <nowiki>DrawMorseLink/@{RBB3,RBB4,RBB5}</nowiki> | |
in = <nowiki>DrawMorseLink/@{RBB3,RBB4,RBB5}</nowiki> | |
||
out= <nowiki>{-Graphics-, -Graphics-, -Graphics-}</nowiki>}} |
out= <nowiki>{-Graphics-, -Graphics-, -Graphics-}</nowiki>}} |
||
Line 63: | Line 63: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 5 | |
||
in = <nowiki>RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}</nowiki> | |
in = <nowiki>RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}</nowiki> | |
||
out= <nowiki> 2 3 4 5 7 8 9 10 |
out= <nowiki> 2 3 4 5 7 8 9 10 |
||
Line 101: | Line 101: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 6 | |
||
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}} |
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 108: | Line 108: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 7 | |
||
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> | |
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> | |
||
out= <nowiki> |
out= <nowiki> 1/4 P[1, 10] P[5, 12] |
||
-((Sqrt[q] SubLink[PD[q P[1, 12] P[5, 10] + -----------------, |
|||
-(q (1 + q) )</nowiki>}} |
|||
1/4 |
|||
q |
|||
1/4 P[2, 12] P[6, 14] |
|||
q P[2, 14] P[6, 12] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[5, 11] P[8, 13] |
|||
q P[5, 13] P[8, 11] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[6, 13] P[9, 15] |
|||
q P[6, 15] P[9, 13] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[0, 10] P[4, 16] |
|||
q P[0, 16] P[4, 10] + -----------------, |
|||
1/4 |
|||
q |
|||
1/4 P[4, 11] P[8, 17] |
|||
q P[4, 17] P[8, 11] + -----------------, |
|||
1/4 |
|||
q |
|||
P[3, 19] P[7, 14] 1/4 |
|||
----------------- + q P[3, 14] P[7, 19], |
|||
1/4 |
|||
q |
|||
P[7, 18] P[9, 15] 1/4 |
|||
----------------- + q P[7, 15] P[9, 18], |
|||
1/4 |
|||
q |
|||
1/4 P[17, 26] P[21, 28] |
|||
q P[17, 28] P[21, 26] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[18, 28] P[22, 30] |
|||
q P[18, 30] P[22, 28] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[21, 27] P[24, 29] |
|||
q P[21, 29] P[24, 27] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[22, 29] P[25, 31] |
|||
q P[22, 31] P[25, 29] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[16, 26] P[20, 32] |
|||
q P[16, 32] P[20, 26] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[20, 27] P[24, 33] |
|||
q P[20, 33] P[24, 27] + -------------------, |
|||
1/4 |
|||
q |
|||
P[19, 35] P[23, 30] 1/4 |
|||
------------------- + q P[19, 30] P[23, 35], |
|||
1/4 |
|||
q |
|||
P[23, 34] P[25, 31] 1/4 |
|||
------------------- + q P[23, 31] P[25, 34], |
|||
1/4 |
|||
q |
|||
1/4 P[33, 42] P[37, 44] |
|||
q P[33, 44] P[37, 42] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[34, 44] P[38, 46] |
|||
q P[34, 46] P[38, 44] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[37, 43] P[40, 45] |
|||
q P[37, 45] P[40, 43] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[38, 45] P[41, 47] |
|||
q P[38, 47] P[41, 45] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[32, 42] P[36, 48] |
|||
q P[32, 48] P[36, 42] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[36, 43] P[40, 49] |
|||
q P[36, 49] P[40, 43] + -------------------, |
|||
1/4 |
|||
q |
|||
P[35, 51] P[39, 46] 1/4 |
|||
------------------- + q P[35, 46] P[39, 51], |
|||
1/4 |
|||
q |
|||
P[39, 50] P[41, 47] 1/4 |
|||
------------------- + q P[39, 47] P[41, 50], |
|||
1/4 |
|||
q |
|||
1/4 P[49, 58] P[53, 60] |
|||
q P[49, 60] P[53, 58] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[50, 60] P[54, 62] |
|||
q P[50, 62] P[54, 60] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[53, 59] P[56, 61] |
|||
q P[53, 61] P[56, 59] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[54, 61] P[57, 63] |
|||
q P[54, 63] P[57, 61] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[48, 58] P[52, 64] |
|||
q P[48, 64] P[52, 58] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[52, 59] P[56, 65] |
|||
q P[52, 65] P[56, 59] + -------------------, |
|||
1/4 |
|||
q |
|||
P[51, 67] P[55, 62] 1/4 |
|||
------------------- + q P[51, 62] P[55, 67], |
|||
1/4 |
|||
q |
|||
P[55, 66] P[57, 63] 1/4 |
|||
------------------- + q P[55, 63] P[57, 66], |
|||
1/4 |
|||
q |
|||
1/4 P[65, 74] P[69, 76] |
|||
q P[65, 76] P[69, 74] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[66, 76] P[70, 78] |
|||
q P[66, 78] P[70, 76] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[69, 75] P[72, 77] |
|||
q P[69, 77] P[72, 75] + -------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[70, 77] P[73, 79] |
|||
q P[70, 79] P[73, 77] + -------------------, |
|||
1/4 |
|||
q |
|||
P[0, 68] P[64, 74] 1/4 |
|||
------------------ + q P[0, 64] P[68, 74], |
|||
1/4 |
|||
q |
|||
P[1, 72] P[68, 75] 1/4 |
|||
------------------ + q P[1, 68] P[72, 75], |
|||
1/4 |
|||
q |
|||
1/4 P[3, 67] P[71, 78] |
|||
q P[3, 71] P[67, 78] + ------------------, |
|||
1/4 |
|||
q |
|||
1/4 P[2, 71] P[73, 79] |
|||
q P[2, 73] P[71, 79] + ------------------], {1, 2, 3, 4}]) / |
|||
1/4 |
|||
q |
|||
(1 + q))</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 128: | Line 327: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 8 | |
||
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]]; |
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]]; |
||
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]]; |
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]]; |
||
Line 150: | Line 349: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 9 | |
||
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]]; |
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]]; |
||
DeleteStrand[k_, {}] = {}; |
DeleteStrand[k_, {}] = {}; |
||
Line 168: | Line 367: | ||
n = 11 | |
n = 11 | |
||
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> | |
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> | |
||
img= User_IvaH/ |
img= User_IvaH/Examples_Out_10.gif | |
||
out= <nowiki>-Graphics-</nowiki>}} |
out= <nowiki>-Graphics-</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 189: | Line 388: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{Graphics| |
{{Graphics| |
||
n = |
n = 14 | |
||
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> | |
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> | |
||
img= User_IvaH/Examples_Out_13.gif | |
img= User_IvaH/Examples_Out_13.gif | |
||
Line 198: | Line 397: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 15 | |
||
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> | |
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> | |
||
out= <nowiki> 1 1 |
out= <nowiki> 1 1 |
Revision as of 14:20, 28 September 2007
"Rubberband" Brunnian Links
A "Rubberband" Brunnian link is obtained by connecting unknots in a closed chain as illustrated in the diagram of the 10-component link, where the last knot gets connected to the first one.
If we number the strands in one section of the link as shown and proceed with numbering each following section in the same manner, we can get its PD form. The PD of any "Rubberband" link can be generated in this way by varying the desired number of components:
(For In[1] see Setup)
In[1]:=
|
K0 =
PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13],
X[6, 13, 9, 15], X[10, 0, 16, 4], X[11, 4, 17, 8], X[14, 7, 19, 3],
X[15, 9, 18, 7]];
|
In[2]:=
|
RubberBandBrunnian[n_] :=
Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16
n -> 0, 16 n + 1 -> 1, 16 n + 2 -> 2, 16 n + 3 -> 3}
|
For instance, let us draw the links with three, four, and five components and compute their Jones polynomials:
In[3]:=
|
RBB3=RubberBandBrunnian[3];
RBB4=RubberBandBrunnian[4];
RBB5=RubberBandBrunnian[5];
|
In[4]:=
|
DrawMorseLink/@{RBB3,RBB4,RBB5}
|
Out[4]=
|
{-Graphics-, -Graphics-, -Graphics-}
|
In[5]:=
|
RBJones= Jones[#][q] & /@ {RBB3, RBB4, RBB5}
|
Out[5]=
|
2 3 4 5 7 8 9 10
{-q + 5 q - 11 q + 14 q - 10 q + 11 q - 18 q + 24 q - 18 q +
11 13 14 15 16 17
11 q - 10 q + 14 q - 11 q + 5 q - q ,
3/2 5/2 7/2 9/2 11/2 13/2 15/2
-q + 7 q - 24 q + 49 q - 56 q + 18 q + 51 q -
17/2 19/2 21/2 23/2 25/2
111 q + 131 q - 100 q + 32 q + 32 q -
27/2 29/2 31/2 33/2 35/2 37/2
100 q + 131 q - 111 q + 51 q + 18 q - 56 q +
39/2 41/2 43/2 45/2
49 q - 24 q + 7 q - q ,
2 3 4 5 6 7 8 9
-q + 9 q - 40 q + 110 q - 189 q + 167 q + 57 q - 414 q +
10 11 12 13 14 15
660 q - 581 q + 189 q + 305 q - 672 q + 816 q -
16 17 18 19 20 21 22
672 q + 305 q + 189 q - 581 q + 660 q - 414 q + 57 q +
23 24 25 26 27 28
167 q - 189 q + 110 q - 40 q + 9 q - q }
|
We can also check that when one component is removed the remaining link is trivial:
In[6]:=
|
S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];
|
In[7]:=
|
J=Factor[Jones[S][q]]
|
Out[7]=
|
1/4 P[1, 10] P[5, 12]
-((Sqrt[q] SubLink[PD[q P[1, 12] P[5, 10] + -----------------,
1/4
q
1/4 P[2, 12] P[6, 14]
q P[2, 14] P[6, 12] + -----------------,
1/4
q
1/4 P[5, 11] P[8, 13]
q P[5, 13] P[8, 11] + -----------------,
1/4
q
1/4 P[6, 13] P[9, 15]
q P[6, 15] P[9, 13] + -----------------,
1/4
q
1/4 P[0, 10] P[4, 16]
q P[0, 16] P[4, 10] + -----------------,
1/4
q
1/4 P[4, 11] P[8, 17]
q P[4, 17] P[8, 11] + -----------------,
1/4
q
P[3, 19] P[7, 14] 1/4
----------------- + q P[3, 14] P[7, 19],
1/4
q
P[7, 18] P[9, 15] 1/4
----------------- + q P[7, 15] P[9, 18],
1/4
q
1/4 P[17, 26] P[21, 28]
q P[17, 28] P[21, 26] + -------------------,
1/4
q
1/4 P[18, 28] P[22, 30]
q P[18, 30] P[22, 28] + -------------------,
1/4
q
1/4 P[21, 27] P[24, 29]
q P[21, 29] P[24, 27] + -------------------,
1/4
q
1/4 P[22, 29] P[25, 31]
q P[22, 31] P[25, 29] + -------------------,
1/4
q
1/4 P[16, 26] P[20, 32]
q P[16, 32] P[20, 26] + -------------------,
1/4
q
1/4 P[20, 27] P[24, 33]
q P[20, 33] P[24, 27] + -------------------,
1/4
q
P[19, 35] P[23, 30] 1/4
------------------- + q P[19, 30] P[23, 35],
1/4
q
P[23, 34] P[25, 31] 1/4
------------------- + q P[23, 31] P[25, 34],
1/4
q
1/4 P[33, 42] P[37, 44]
q P[33, 44] P[37, 42] + -------------------,
1/4
q
1/4 P[34, 44] P[38, 46]
q P[34, 46] P[38, 44] + -------------------,
1/4
q
1/4 P[37, 43] P[40, 45]
q P[37, 45] P[40, 43] + -------------------,
1/4
q
1/4 P[38, 45] P[41, 47]
q P[38, 47] P[41, 45] + -------------------,
1/4
q
1/4 P[32, 42] P[36, 48]
q P[32, 48] P[36, 42] + -------------------,
1/4
q
1/4 P[36, 43] P[40, 49]
q P[36, 49] P[40, 43] + -------------------,
1/4
q
P[35, 51] P[39, 46] 1/4
------------------- + q P[35, 46] P[39, 51],
1/4
q
P[39, 50] P[41, 47] 1/4
------------------- + q P[39, 47] P[41, 50],
1/4
q
1/4 P[49, 58] P[53, 60]
q P[49, 60] P[53, 58] + -------------------,
1/4
q
1/4 P[50, 60] P[54, 62]
q P[50, 62] P[54, 60] + -------------------,
1/4
q
1/4 P[53, 59] P[56, 61]
q P[53, 61] P[56, 59] + -------------------,
1/4
q
1/4 P[54, 61] P[57, 63]
q P[54, 63] P[57, 61] + -------------------,
1/4
q
1/4 P[48, 58] P[52, 64]
q P[48, 64] P[52, 58] + -------------------,
1/4
q
1/4 P[52, 59] P[56, 65]
q P[52, 65] P[56, 59] + -------------------,
1/4
q
P[51, 67] P[55, 62] 1/4
------------------- + q P[51, 62] P[55, 67],
1/4
q
P[55, 66] P[57, 63] 1/4
------------------- + q P[55, 63] P[57, 66],
1/4
q
1/4 P[65, 74] P[69, 76]
q P[65, 76] P[69, 74] + -------------------,
1/4
q
1/4 P[66, 76] P[70, 78]
q P[66, 78] P[70, 76] + -------------------,
1/4
q
1/4 P[69, 75] P[72, 77]
q P[69, 77] P[72, 75] + -------------------,
1/4
q
1/4 P[70, 77] P[73, 79]
q P[70, 79] P[73, 77] + -------------------,
1/4
q
P[0, 68] P[64, 74] 1/4
------------------ + q P[0, 64] P[68, 74],
1/4
q
P[1, 72] P[68, 75] 1/4
------------------ + q P[1, 68] P[72, 75],
1/4
q
1/4 P[3, 67] P[71, 78]
q P[3, 71] P[67, 78] + ------------------,
1/4
q
1/4 P[2, 71] P[73, 79]
q P[2, 73] P[71, 79] + ------------------], {1, 2, 3, 4}]) /
1/4
q
(1 + q))
|
Brunnian Braids
Similarly, in the case of Brunnian braids, removing one strand gives us a trivial braid. We can verify that using the following two programs. The first one constructs a Brunnian braid while the second one removes a selected strand:
In[8]:=
|
BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]];
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]];
BrunnianBraid[2] = BR[2, {1, 1}];
BrunnianBraid[n_] /; n > 2 := Module[
{b0},
b0 = BrunnianBraid[n - 1];
((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) **
BR[n, {1 - n, 1 - n}]
]
|
In[9]:=
|
DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
DeleteStrand[k_, {}] = {};
DeleteStrand[k_, {j1_, js___}] := Which[
k < Abs[j1], {j1 - Sign[j1]}~Join~DeleteStrand[k, {js}],
k == Abs[j1], DeleteStrand[k + 1, {js}],
k == Abs[j1] + 1, DeleteStrand[k - 1, {js}],
k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}]
]
|
Testing for the Brunnian braid with four strands, we get:
In[11]:=
|
(b = BrunnianBraid[4]) // BraidPlot
|
File:User IvaH/Examples Out 10.gif | |
Out[11]=
|
-Graphics-
|
In[12]:=
|
Jones[b][q]
|
Out[12]=
|
-(11/2) 4 6 5 5 1 3/2
-q + ---- - ---- + ---- - ---- - ------- - Sqrt[q] - 5 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2 7/2 9/2 11/2
5 q - 6 q + 4 q - q
|
In[14]:=
|
(bb = DeleteStrand[4, b]) // BraidPlot
|
File:User IvaH/Examples Out 13.gif | |
Out[14]=
|
-Graphics-
|
In[15]:=
|
Jones[#][q] & /@ {bb, BR[3, {}]}
|
Out[15]=
|
1 1
{2 + - + q, 2 + - + q}
q q
|