The A2 Invariant: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				| m (Reverted edits by OrbasLitrt (Talk); changed back to last version by DrorsRobot) | AleltAcelb (talk | contribs)  No edit summary | ||
| Line 1: | Line 1: | ||
| http://www.textc4tvarouorri.com  | |||
| {{Manual TOC Sidebar}} | {{Manual TOC Sidebar}} | ||
Revision as of 09:34, 21 May 2009
http://www.textc4tvarouorri.com
We compute the (or quantum ) invariant using the normalization and formulas of [Khovanov], which in itself follows [Kuperberg]:
(For In[1] see Setup)
| 
 | ||||
As an example, let us check that the knots 10_22 and 10_35 have the same Jones polynomial but different invariants:
| In[2]:= | Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q] | 
| Out[2]= | True | 
| In[3]:= | A2Invariant[Knot[10, 22]][q] | 
| Out[3]= |       -12    -8    -6    -4   2     4      6    8    10    12    14
-1 + q    + q   + q   - q   + -- - q  - 2 q  + q  - q   + q   + q   + 
                               2
                              q
 
   18
  q | 
| In[4]:= | A2Invariant[Knot[10, 35]][q] | 
| Out[4]= |  -14    -12    -10    -8   2    2     2    6    8      10    14    16
q    + q    - q    + q   - -- + -- + q  - q  + q  - 2 q   + q   - q   + 
                            4    2
                           q    q
 
   18    20
  q   + q | 
The  invariant attains 2163 values on the 2226 knots and links known to KnotTheory:
| In[5]:= | all = Join[AllKnots[], AllLinks[]]; | 
| In[6]:= | Length /@ {Union[A2Invariant[#][q]& /@ all], all} | 
| Out[6]= | {2163, 2226} | 
[Khovanov] ^ M. Khovanov, link homology I, arXiv:math.QA/0304375.
[Kuperberg] ^ G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109-151, arXiv:q-alg/9712003.


