Planar Diagrams: Difference between revisions
No edit summary |
No edit summary |
||
| (15 intermediate revisions by 4 users not shown) | |||
| Line 14: | Line 14: | ||
<!--$$?PD$$--> |
<!--$$?PD$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=1|s=PD}} |
|||
n = 2 | |
|||
| ⚫ | |||
n1 = 3 | |
|||
{{HelpAndAbout2|n=2|s=PD}} |
|||
in = <nowiki>PD</nowiki> | |
|||
| ⚫ | |||
| ⚫ | |||
{{HelpAndAbout3}} |
|||
| ⚫ | |||
<!--END--> |
<!--END--> |
||
<!--$$?X$$--> |
<!--$$?X$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=3|s=X}} |
|||
n = 4 | |
|||
| ⚫ | |||
in = <nowiki>X</nowiki> | |
|||
{{Help2}} |
|||
| ⚫ | |||
<!--END--> |
<!--END--> |
||
Thus, for example, let us compute the determinant of the above knot: |
Thus, for example, let us compute the determinant of the above knot: |
||
<!--$$K = PD[ |
|||
| ⚫ | |||
X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], |
|||
| ⚫ | |||
];$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{In| |
||
n = 5 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = PD[X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], X[7,1,8,12], X[9,4,10,5], X[11,7,12,6]];</nowiki></pre> |
|||
in = <nowiki>K = PD[ |
|||
{{In2}} |
|||
X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], |
|||
X[7,1,8,12], X[9,4,10,5], X[11,7,12,6] |
|||
];</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Alexander[K][-1]$$--> |
<!--$$Alexander[K][-1]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 6 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K][-1]</nowiki></pre> |
|||
in = <nowiki>Alexander[K][-1]</nowiki> | |
|||
out= <nowiki>-11</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
| Line 51: | Line 59: | ||
<!--$$?Xp$$--> |
<!--$$?Xp$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=6|s=Xp}} |
|||
n = 7 | |
|||
| ⚫ | Xp[i,j,k,l] represents a positive (right handed) crossing between the edges labeled i, j, k and l starting from the incoming lower strand i and going counter clockwise through j, k and l. The upper strand is therefore oriented from l to j regardless of the ordering of {j,l}. Presently Xp is only lightly supported. |
||
in = <nowiki>Xp</nowiki> | |
|||
{{Help2}} |
|||
| ⚫ | out= <nowiki>Xp[i,j,k,l] represents a positive (right handed) crossing between the edges labeled i, j, k and l starting from the incoming lower strand i and going counter clockwise through j, k and l. The upper strand is therefore oriented from l to j regardless of the ordering of {j,l}. Presently Xp is only lightly supported.</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
<!--$$?Xm$$--> |
<!--$$?Xm$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=7|s=Xm}} |
|||
n = 8 | |
|||
| ⚫ | Xm[i,j,k,l] represents a negative (left handed) crossing between the edges labeled i, j, k and l starting from the incoming lower strand i and going counter clockwise through j, k and l. The upper strand is therefore oriented from j to l regardless of the ordering of {j,l}. Presently Xm is only lightly supported. |
||
in = <nowiki>Xm</nowiki> | |
|||
{{Help2}} |
|||
| ⚫ | out= <nowiki>Xm[i,j,k,l] represents a negative (left handed) crossing between the edges labeled i, j, k and l starting from the incoming lower strand i and going counter clockwise through j, k and l. The upper strand is therefore oriented from j to l regardless of the ordering of {j,l}. Presently Xm is only lightly supported.</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
<!--$$?P$$--> |
<!--$$?P$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=8|s=P}} |
|||
n = 9 | |
|||
| ⚫ | |||
in = <nowiki>P</nowiki> | |
|||
{{Help2}} |
|||
| ⚫ | |||
<!--END--> |
<!--END--> |
||
For example, we could add an extra "point" on the Miller Institute knot, splitting edge 12 into two pieces, labeled 12 and 13: |
For example, we could add an extra "point" on the Miller Institute knot, splitting edge 12 into two pieces, labeled 12 and 13: |
||
<!--$$K1 = PD[ |
|||
<!--$$K1 = PD[X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], X[7,1,8,13], X[9,4,10,5], X[11,7,12,6], P[12,13]];$$--> |
|||
X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], |
|||
X[7,1,8,13], X[9,4,10,5], X[11,7,12,6], |
|||
P[12,13] |
|||
];$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{In| |
||
n = 10 | |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K1 = PD[X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], X[7,1,8,13], X[9,4,10,5], X[11,7,12,6], P[12,13]];</nowiki></pre> |
|||
in = <nowiki>K1 = PD[ |
|||
{{In2}} |
|||
X[1,9,2,8], X[3,10,4,11], X[5,3,6,2], |
|||
X[7,1,8,13], X[9,4,10,5], X[11,7,12,6], |
|||
P[12,13] |
|||
];</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
| Line 83: | Line 102: | ||
<!--$$Jones[K][q] == Jones[K1][q]$$--> |
<!--$$Jones[K][q] == Jones[K1][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=10}} |
|||
n = 11 | |
|||
in = <nowiki>Jones[K][q] == Jones[K1][q]</nowiki> | |
|||
{{InOut2|n=10}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre> |
|||
out= <nowiki>True</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?Loop$$--> |
<!--$$?Loop$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=11|s=Loop}} |
|||
n = 12 | |
|||
| ⚫ | |||
in = <nowiki>Loop</nowiki> | |
|||
{{Help2}} |
|||
| ⚫ | |||
<!--END--> |
<!--END--> |
||
| Line 100: | Line 120: | ||
<!--$$A2Invariant[Loop[1]][q]$$--> |
<!--$$A2Invariant[Loop[1]][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=12}} |
|||
n = 13 | |
|||
in = <nowiki>A2Invariant[Loop[1]][q]</nowiki> | |
|||
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki> -2 2 |
|||
out= <nowiki> -2 2 |
|||
1 + q + q</nowiki> |
1 + q + q</nowiki>}} |
||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Latest revision as of 17:08, 21 February 2013
In the "Planar Diagrams" (PD) presentation we present every knot or link diagram by labeling its edges (with natural numbers, 1,...,n, and with increasing labels as we go around each component) and by a list crossings presented as symbols where , , and are the labels of the edges around that crossing, starting from the incoming lower edge and proceeding counterclockwise. Thus for example, the PD presentation of the knot above is:
(This of course is the Miller Institute knot, the mirror image of the knot 6_2)
(For In[1] see Setup)
|
| ||||||||
| ||||
Thus, for example, let us compute the determinant of the above knot:
In[5]:=
|
K = PD[
X[1,9,2,8], X[3,10,4,11], X[5,3,6,2],
X[7,1,8,12], X[9,4,10,5], X[11,7,12,6]
];
|
In[6]:=
|
Alexander[K][-1]
|
Out[6]=
|
-11
|
Some further details
| ||||
| ||||
| ||||
For example, we could add an extra "point" on the Miller Institute knot, splitting edge 12 into two pieces, labeled 12 and 13:
In[10]:=
|
K1 = PD[
X[1,9,2,8], X[3,10,4,11], X[5,3,6,2],
X[7,1,8,13], X[9,4,10,5], X[11,7,12,6],
P[12,13]
];
|
At the moment, many of our routines do not know to ignore such "extra points". But some do:
In[11]:=
|
Jones[K][q] == Jones[K1][q]
|
Out[11]=
|
True
|
| ||||
Hence we can verify that the A2 invariant of the unknot is :
In[13]:=
|
A2Invariant[Loop[1]][q]
|
Out[13]=
|
-2 2
1 + q + q
|
