Invariants from Braid Theory: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(9 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Manual TOC Sidebar}}
{{Manual TOC Sidebar}}


The ``braid length`` of a knot or a link <math>K</math> is the smallest number of crossings in a braid whose closure is <math>K</math>. <code>KnotTheory`</code> has some braid lengths preloaded:
The ''braid length'' of a knot or a link <math>K</math> is the smallest number of crossings in a braid whose closure is <math>K</math>. <code>KnotTheory`</code> has some braid lengths preloaded:


{{Startup Note}}
{{Startup Note}}


<!--$$?BraidLength$$-->
<!--$$?BraidLength$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 2 |
in = <nowiki>BraidLength</nowiki> |
out= <nowiki>BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.</nowiki>}}
<!--END-->
<!--END-->


Line 11: Line 16:


<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 3 |
in = <nowiki>K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}</nowiki> |
out= <nowiki>{11, 11}</nowiki>}}
<!--END-->
<!--END-->


{{Knot Image Pair|9_49|gif|10_136|gif}}
The ``braid index`` of a knot or a link <math>K</math> is the smallest number of strands in a braid whose closure is <math>K</math>. <code>KnotTheory`</code> has some braid indices preloaded:

The ''braid index'' of a knot or a link <math>K</math> is the smallest number of strands in a braid whose closure is <math>K</math>. <code>KnotTheory`</code> has some braid indices preloaded:


<!--$$?BraidIndex$$-->
<!--$$?BraidIndex$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
n = 4 |
n1 = 5 |
in = <nowiki>BraidIndex</nowiki> |
out= <nowiki>BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.</nowiki> |
about= <nowiki>The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
<!--END-->
<!--END-->


Line 21: Line 40:


<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 6 |
in = <nowiki>K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}</nowiki> |
out= <nowiki>{4, 5}</nowiki>}}
<!--END-->
<!--END-->


<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
n = 7 |
in = <nowiki>Show[BraidPlot[BR[K]]]</nowiki> |
img= Invariants_from_Braid_Theory_Out_7.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->

Latest revision as of 17:20, 21 February 2013


The braid length of a knot or a link is the smallest number of crossings in a braid whose closure is . KnotTheory` has some braid lengths preloaded:

(For In[1] see Setup)

In[2]:= ?BraidLength
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.

Note that the braid length of is simply the length of the minimum braid representing (see Braid Representatives):

In[3]:= K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}
Out[3]= {11, 11}
9 49.gif
9_49
10 136.gif
10_136

The braid index of a knot or a link is the smallest number of strands in a braid whose closure is . KnotTheory` has some braid indices preloaded:

In[4]:= ?BraidIndex
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
In[5]:= BraidIndex::about
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Of the 250 knots with up to 10 crossings, only 10_136 has braid index smaller than the width of its minimum braid:

In[6]:= K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}
Out[6]= {4, 5}
In[7]:= Show[BraidPlot[BR[K]]]
Invariants from Braid Theory Out 7.gif
Out[7]= -Graphics-