Invariants from Braid Theory: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
m (Reverted edits by VitrrAccna (Talk); changed back to last version by Scott)
No edit summary
 
Line 8: Line 8:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 1 |
n = 2 |
in = <nowiki>BraidLength</nowiki> |
in = <nowiki>BraidLength</nowiki> |
out= <nowiki>BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.</nowiki>}}
out= <nowiki>BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.</nowiki>}}
Line 18: Line 18:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 2 |
n = 3 |
in = <nowiki>K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}</nowiki> |
in = <nowiki>K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}</nowiki> |
out= <nowiki>{11, 11}</nowiki>}}
out= <nowiki>{11, 11}</nowiki>}}
Line 30: Line 30:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 3 |
n = 4 |
n1 = 4 |
n1 = 5 |
in = <nowiki>BraidIndex</nowiki> |
in = <nowiki>BraidIndex</nowiki> |
out= <nowiki>BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.</nowiki> |
out= <nowiki>BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.</nowiki> |
Line 42: Line 42:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 5 |
n = 6 |
in = <nowiki>K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}</nowiki> |
in = <nowiki>K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}</nowiki> |
out= <nowiki>{4, 5}</nowiki>}}
out= <nowiki>{4, 5}</nowiki>}}
Line 52: Line 52:
n = 7 |
n = 7 |
in = <nowiki>Show[BraidPlot[BR[K]]]</nowiki> |
in = <nowiki>Show[BraidPlot[BR[K]]]</nowiki> |
img= Invariants_from_Braid_Theory_Out_6.gif |
img= Invariants_from_Braid_Theory_Out_7.gif |
out= <nowiki>-Graphics-</nowiki>}}
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->

Latest revision as of 17:20, 21 February 2013


The braid length of a knot or a link is the smallest number of crossings in a braid whose closure is . KnotTheory` has some braid lengths preloaded:

(For In[1] see Setup)

In[2]:= ?BraidLength
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.

Note that the braid length of is simply the length of the minimum braid representing (see Braid Representatives):

In[3]:= K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}
Out[3]= {11, 11}
9 49.gif
9_49
10 136.gif
10_136

The braid index of a knot or a link is the smallest number of strands in a braid whose closure is . KnotTheory` has some braid indices preloaded:

In[4]:= ?BraidIndex
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
In[5]:= BraidIndex::about
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Of the 250 knots with up to 10 crossings, only 10_136 has braid index smaller than the width of its minimum braid:

In[6]:= K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}
Out[6]= {4, 5}
In[7]:= Show[BraidPlot[BR[K]]]
Invariants from Braid Theory Out 7.gif
Out[7]= -Graphics-