Prime Links with a Non-Prime Component: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Manual TOC Sidebar}} |
{{Manual TOC Sidebar}} |
||
Let us find all (prime!) links in the Knot Atlas that have a non-prime component. Since the links listed in the Knot Atlas have at most 11 crossings, such a component may only be the sum of exactly two knots chosen among the trefoil, the figure eight knot, and their mirror images. The figure eight knot's mirror image is itself so we have five possibilities. Computing the Jones polynomial of each, we get: |
Let us find all (prime!) links in the Knot Atlas that have a non-prime component. Since the links listed in the Knot Atlas have at most 11 crossings, such a component may only be the sum of exactly two knots chosen among the trefoil, the figure eight knot, and their mirror images. The figure eight knot's mirror image is itself so we have five possibilities. Computing the Jones polynomial of each, we get: |
||
{{Startup Note}} |
{{Startup Note}} |
||
<!--$$ |
<!--$$K31 = Knot[3, 1]; K41 = Knot[4, 1];$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = 2 | |
n = 2 | |
||
in = <nowiki> |
in = <nowiki>K31 = Knot[3, 1]; K41 = Knot[4, 1];</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
<!--$$CompositeJones = |
<!--$$CompositeJones = |
||
Jones[#][q] & /@ {ConnectedSum[K31, K31], |
|||
ConnectedSum[K31, Mirror[K31]], |
|||
J31[q] J41[q], J31[1/q] J41[q]}]$$--> |
|||
ConnectedSum[Mirror[K31], Mirror[K31]], ConnectedSum[K31, K41], |
|||
ConnectedSum[Mirror[K31], K41]}$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = 3 | |
n = 3 | |
||
in = <nowiki>CompositeJones = |
in = <nowiki>CompositeJones = |
||
Jones[#][q] & /@ {ConnectedSum[K31, K31], |
|||
ConnectedSum[K31, Mirror[K31]], |
|||
J31[q] J41[q], J31[1/q] J41[q]}]</nowiki> | |
|||
ConnectedSum[Mirror[K31], Mirror[K31]], ConnectedSum[K31, K41], |
|||
ConnectedSum[Mirror[K31], K41]}</nowiki> | |
|||
out= <nowiki> -8 2 -6 2 2 -2 -3 -2 1 2 3 |
out= <nowiki> -8 2 -6 2 2 -2 -3 -2 1 2 3 |
||
{q - -- + q - -- + -- + q , 3 - q + q - - - q + q - q , |
{q - -- + q - -- + -- + q , 3 - q + q - - - q + q - q , |
||
Line 40: | Line 42: | ||
<!--END--> |
<!--END--> |
||
Now, we can use the |
Now, we can use the program [[SubLink.m|<code>SubLink</code>]] that determines the PD form of a knot (or a link) made up of the selected component(s) of a certain link: |
||
<!--$$Import["http://katlas.org/w/index.php?title=SubLink.m&action=raw"];$$--> |
|||
<!--$$SubLink[pd_PD, js_List] := Module[ |
|||
{k, t0, t, t1, t2, S, P, T}, |
|||
t0 = Flatten[List @@@ Skeleton[pd][[js]]]; |
|||
t = pd /. x_X :> Select[x, MemberQ[t0, #] &]; |
|||
t = DeleteCases[t, X[]]; |
|||
k = 1; |
|||
While[ |
|||
k <= Length[t], |
|||
If[ Length[t[[k]]] < 4, |
|||
t = Delete[t, k] /. (Rule @@ t[[k]]), ++k]; |
|||
]; |
|||
t1 = List @@ Union @@ t; |
|||
t2 = Thread[(t1) -> Range[Length[t1]]]; |
|||
S = t /. t2; |
|||
P = If[S != PD[] && Length[S] >= 3, S, PD[Knot[0, 1]], S] |
|||
] |
|||
SubLink[pd_PD, j_] := SubLink[pd, {j}]; |
|||
SubLink[L_, js_] := SubLink[PD[L], js];$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = 4 | |
n = 4 | |
||
in = <nowiki>Import["http://katlas.org/w/index.php?title=SubLink.m&action=raw"];</nowiki>}} |
|||
in = <nowiki>SubLink[pd_PD, js_List] := Module[ |
|||
{k, t0, t, t1, t2, S, P, T}, |
|||
t0 = Flatten[List @@@ Skeleton[pd][[js]]]; |
|||
t = pd /. x_X :> Select[x, MemberQ[t0, #] &]; |
|||
t = DeleteCases[t, X[]]; |
|||
k = 1; |
|||
While[ |
|||
k <= Length[t], |
|||
If[ Length[t[[k]]] < 4, |
|||
t = Delete[t, k] /. (Rule @@ t[[k]]), ++k]; |
|||
]; |
|||
t1 = List @@ Union @@ t; |
|||
t2 = Thread[(t1) -> Range[Length[t1]]]; |
|||
S = t /. t2; |
|||
P = If[S != PD[] && Length[S] >= 3, S, PD[Knot[0, 1]], S] |
|||
] |
|||
SubLink[pd_PD, j_] := SubLink[pd, {j}]; |
|||
SubLink[L_, js_] := SubLink[PD[L], js];</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Using SubLink |
Using <code>SubLink</code> and the Jones polynomials of the five composite knots mentioned above, we can find all links that have one of these as a component: |
||
<!--$$NonPrimeComponentQ[L_] := |
<!--$$NonPrimeComponentQ[L_] := |
Latest revision as of 14:00, 20 October 2013
Let us find all (prime!) links in the Knot Atlas that have a non-prime component. Since the links listed in the Knot Atlas have at most 11 crossings, such a component may only be the sum of exactly two knots chosen among the trefoil, the figure eight knot, and their mirror images. The figure eight knot's mirror image is itself so we have five possibilities. Computing the Jones polynomial of each, we get:
(For In[1] see Setup)
In[2]:=
|
K31 = Knot[3, 1]; K41 = Knot[4, 1];
|
In[3]:=
|
CompositeJones =
Jones[#][q] & /@ {ConnectedSum[K31, K31],
ConnectedSum[K31, Mirror[K31]],
ConnectedSum[Mirror[K31], Mirror[K31]], ConnectedSum[K31, K41],
ConnectedSum[Mirror[K31], K41]}
|
Out[3]=
|
-8 2 -6 2 2 -2 -3 -2 1 2 3
{q - -- + q - -- + -- + q , 3 - q + q - - - q + q - q ,
7 5 4 q
q q q
2 4 5 6 7 8
q + 2 q - 2 q + q - 2 q + q ,
-6 2 2 3 3 2
-1 - q + -- - -- + -- - -- + - + q,
5 4 3 2 q
q q q q
1 2 3 4 5 6
-1 + - + 2 q - 3 q + 3 q - 2 q + 2 q - q }
q
|
Now, we can use the program SubLink
that determines the PD form of a knot (or a link) made up of the selected component(s) of a certain link:
In[4]:=
|
Import["http://katlas.org/w/index.php?title=SubLink.m&action=raw"];
|
Using SubLink
and the Jones polynomials of the five composite knots mentioned above, we can find all links that have one of these as a component:
In[5]:=
|
NonPrimeComponentQ[L_] :=
Or @@ (MemberQ[CompositeJones, Jones[SubLink[L, #]][q]] & /@
Range[Length[Skeleton[L]]])
|
In[6]:=
|
Exceptions= Select[AllLinks[], NonPrimeComponentQ]
|
Out[6]=
|
{Link[10, Alternating, 38], Link[10, Alternating, 39],
Link[10, Alternating, 46], Link[10, NonAlternating, 35],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 37],
Link[10, NonAlternating, 38], Link[10, NonAlternating, 39],
Link[11, Alternating, 91], Link[11, Alternating, 92],
Link[11, Alternating, 93], Link[11, Alternating, 95],
Link[11, Alternating, 121], Link[11, Alternating, 128],
Link[11, Alternating, 130], Link[11, NonAlternating, 110],
Link[11, NonAlternating, 111], Link[11, NonAlternating, 112],
Link[11, NonAlternating, 113], Link[11, NonAlternating, 114],
Link[11, NonAlternating, 115]}
|
Thus, there are 21 links in the Knot Atlas that have a non-prime component. The first eight of those are:
L10a38 |
L10a39 |
L10a46 |
L10n35 |
L10n36 |
L10n37 |
L10n38 |
L10n39 |