Cabling: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:


{{Startup Note}}
{{Startup Note}}
<!--$$Import["http://katlas.org/wiki/CableComponent.m&action=raw"];$$--><!--END-->
<!--$$Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 2 |
in = <nowiki>Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];</nowiki>}}
<!--END-->
<!--$$CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink$$-->
<!--$$CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->

Latest revision as of 14:06, 20 October 2013


CableComponent[BR[n,js],K], whose code is available here, returns the -th cable of the knot with the braid on strands with crossings js = {j1, j2, ...} inserted in it. It also performs the necessary number of -twists on the components of the cable to compensate for a non-zero writhe number of the original knot. Cabling knot 3_1, for instance, and inserting the braid BR[3,{1,2}], we get:

(For In[1] see Setup)

In[2]:= Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];
In[3]:= CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink
Cabling Out 3.gif
Out[3]= -Graphics-

For some special cases, we can check our result using Burau's Theorem.