10 116: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_116}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=116|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,6,-1,3,-4,9,-5,10,-8,7,-3,4,-2,5,-6,8,-7/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>1</td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>3</td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>9</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16], |
|||
X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14], |
|||
X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, |
|||
-6, 8, -7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 116]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 5 12 19 2 3 4 |
|||
-21 - t + -- - -- + -- + 19 t - 12 t + 5 t - t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 116]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 |
|||
1 - 2 z - 3 z - z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33], |
|||
Knot[11, Alternating, 82]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{95, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 116]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 8 12 15 16 15 2 3 |
|||
-11 + q - -- + -- - -- + -- - -- + -- + 8 q - 4 q + q |
|||
6 5 4 3 2 q |
|||
q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 116]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 116]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 2 2 2 2 3 4 3 3 2 4 |
|||
1 + q - --- + --- - --- + --- - -- + -- - -- + -- - q + 2 q - |
|||
18 16 14 10 8 6 4 2 |
|||
q q q q q q q q |
|||
6 8 |
|||
2 q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 116]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
z 3 5 2 z 2 2 4 2 6 2 |
|||
1 - - - 3 a z - 3 a z - a z - z + -- - 3 a z + a z + 2 a z + |
|||
a 2 |
|||
a |
|||
3 4 |
|||
6 z 3 3 3 5 3 7 3 4 2 z |
|||
---- + 17 a z + 19 a z + 6 a z - 2 a z + 9 z - ---- + |
|||
a 2 |
|||
a |
|||
5 |
|||
2 4 4 4 6 4 8 4 10 z 5 3 5 |
|||
19 a z - a z - 8 a z + a z - ----- - 22 a z - 29 a z - |
|||
a |
|||
6 |
|||
5 5 7 5 6 z 2 6 4 6 6 6 |
|||
13 a z + 4 a z - 15 z + -- - 32 a z - 8 a z + 8 a z + |
|||
2 |
|||
a |
|||
7 |
|||
4 z 7 3 7 5 7 8 2 8 4 8 |
|||
---- + 3 a z + 9 a z + 10 a z + 6 z + 14 a z + 8 a z + |
|||
a |
|||
9 3 9 |
|||
3 a z + 3 a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 116]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 9 1 3 1 5 3 7 5 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
|||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
|||
q q t q t q t q t q t q t q t |
|||
8 7 8 8 5 t 2 3 2 |
|||
----- + ----- + ---- + ---- + --- + 6 q t + 3 q t + 5 q t + |
|||
7 2 5 2 5 3 q |
|||
q t q t q t q t |
|||
3 3 5 3 7 4 |
|||
q t + 3 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 21:47, 27 August 2005
|
|
|
|
Visit 10 116's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 116's page at Knotilus! Visit 10 116's page at the original Knot Atlas! |
10 116 Quick Notes |
Knot presentations
| Planar diagram presentation | X6271 X16,3,17,4 X14,7,15,8 X8,15,9,16 X10,18,11,17 X18,6,19,5 X20,13,1,14 X12,19,13,20 X2,10,3,9 X4,11,5,12 |
| Gauss code | 1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, -7 |
| Dowker-Thistlethwaite code | 6 16 18 14 2 4 20 8 10 12 |
| Conway Notation | [8*2:2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-3 z^6-2 z^4+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 95, -2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle q^{42}-3q^{40}+q^{38}+8q^{36}-14q^{34}+2q^{32}+24q^{30}-31q^{28}-5q^{26}+45q^{24}-29q^{22}-23q^{20}+40q^{18}-4q^{16}-29q^{14}+10q^{12}+23q^{10}-16q^{8}-22q^{6}+35q^{4}+5q^{2}-42+29q^{-2}+24q^{-4}-42q^{-6}+6q^{-8}+28q^{-10}-20q^{-12}-8q^{-14}+13q^{-16}-q^{-18}-3q^{-20}+q^{-22}} |
| 3 | |
| 5 | |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-3 q^{64}+3 q^{62}-4 q^{60}+10 q^{58}-14 q^{56}+14 q^{54}-18 q^{52}+27 q^{50}-29 q^{48}+26 q^{46}-32 q^{44}+35 q^{42}-27 q^{40}+19 q^{38}-16 q^{36}+6 q^{34}+11 q^{32}-19 q^{30}+28 q^{28}-43 q^{26}+54 q^{24}-56 q^{22}+60 q^{20}-65 q^{18}+60 q^{16}-52 q^{14}+46 q^{12}-39 q^{10}+24 q^8-10 q^6+3 q^4+9 q^2-18+30 q^{-2} -29 q^{-4} +33 q^{-6} -34 q^{-8} +33 q^{-10} -28 q^{-12} +23 q^{-14} -19 q^{-16} +13 q^{-18} -8 q^{-20} +5 q^{-22} -3 q^{-24} + q^{-26} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-3 q^{112}+6 q^{110}-10 q^{108}+10 q^{106}-8 q^{104}+q^{102}+16 q^{100}-34 q^{98}+54 q^{96}-64 q^{94}+51 q^{92}-23 q^{90}-27 q^{88}+89 q^{86}-140 q^{84}+173 q^{82}-158 q^{80}+88 q^{78}+24 q^{76}-156 q^{74}+263 q^{72}-304 q^{70}+240 q^{68}-89 q^{66}-104 q^{64}+263 q^{62}-309 q^{60}+233 q^{58}-52 q^{56}-150 q^{54}+265 q^{52}-247 q^{50}+82 q^{48}+155 q^{46}-343 q^{44}+398 q^{42}-275 q^{40}+28 q^{38}+249 q^{36}-454 q^{34}+500 q^{32}-388 q^{30}+147 q^{28}+134 q^{26}-350 q^{24}+441 q^{22}-368 q^{20}+181 q^{18}+51 q^{16}-241 q^{14}+301 q^{12}-226 q^{10}+47 q^8+170 q^6-305 q^4+297 q^2-138-95 q^{-2} +304 q^{-4} -396 q^{-6} +330 q^{-8} -150 q^{-10} -70 q^{-12} +244 q^{-14} -312 q^{-16} +271 q^{-18} -144 q^{-20} +6 q^{-22} +90 q^{-24} -132 q^{-26} +116 q^{-28} -72 q^{-30} +29 q^{-32} +6 q^{-34} -21 q^{-36} +21 q^{-38} -16 q^{-40} +8 q^{-42} -3 q^{-44} + q^{-46} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 116"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-3 z^6-2 z^4+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 95, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
| 7 | 1 | 1 | |||||||||||||||||||
| 5 | 3 | -3 | |||||||||||||||||||
| 3 | 5 | 1 | 4 | ||||||||||||||||||
| 1 | 6 | 3 | -3 | ||||||||||||||||||
| -1 | 9 | 5 | 4 | ||||||||||||||||||
| -3 | 8 | 7 | -1 | ||||||||||||||||||
| -5 | 7 | 8 | -1 | ||||||||||||||||||
| -7 | 5 | 8 | 3 | ||||||||||||||||||
| -9 | 3 | 7 | -4 | ||||||||||||||||||
| -11 | 1 | 5 | 4 | ||||||||||||||||||
| -13 | 3 | -3 | |||||||||||||||||||
| -15 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 116]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 116]] |
Out[3]= | PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16],X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14],X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]] |
In[4]:= | GaussCode[Knot[10, 116]] |
Out[4]= | GaussCode[1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, -7] |
In[5]:= | BR[Knot[10, 116]] |
Out[5]= | BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[10, 116]][t] |
Out[6]= | -4 5 12 19 2 3 4 |
In[7]:= | Conway[Knot[10, 116]][z] |
Out[7]= | 4 6 8 1 - 2 z - 3 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33],
Knot[11, Alternating, 82]} |
In[9]:= | {KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]} |
Out[9]= | {95, -2} |
In[10]:= | J=Jones[Knot[10, 116]][q] |
Out[10]= | -7 4 8 12 15 16 15 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 116]} |
In[12]:= | A2Invariant[Knot[10, 116]][q] |
Out[12]= | -20 2 2 2 2 3 4 3 3 2 4 |
In[13]:= | Kauffman[Knot[10, 116]][a, z] |
Out[13]= | 2z 3 5 2 z 2 2 4 2 6 2 |
In[14]:= | {Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 116]][q, t] |
Out[15]= | 7 9 1 3 1 5 3 7 5 |







