9 44: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=9_44}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=9|k=44|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-9,5,3,-4,2,7,-8,9,-5,6,-7,8,-6/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], |
|||
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 44]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 44]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 |
|||
7 + t - - - 4 t + t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 44]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 |
|||
1 + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 44]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{17, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 44]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 2 3 3 2 |
|||
3 - q + -- - -- + -- - - - 2 q + q |
|||
4 3 2 q |
|||
q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 44]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 44]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 2 -6 -4 4 6 8 |
|||
-1 - q + -- + q + q - q + q + q |
|||
8 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 44]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-2 2 4 z 3 5 2 z 2 2 |
|||
-2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z + |
|||
a 2 |
|||
a |
|||
3 |
|||
4 2 2 z 3 3 3 5 3 4 2 4 |
|||
5 a z + ---- + 4 a z - a z - 3 a z - 3 z - 10 a z - |
|||
a |
|||
4 4 5 3 5 5 5 6 2 6 4 6 7 |
|||
7 a z - 3 a z - 2 a z + a z + z + 3 a z + 2 a z + a z + |
|||
3 7 |
|||
a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 44]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 1 1 1 1 1 2 1 |
|||
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
|||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
|||
q t q t q t q t q t q t q t |
|||
1 2 3 5 2 |
|||
---- + --- + q t + q t + q t |
|||
3 q t |
|||
q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:50, 27 August 2005
|
|
|
|
Visit 9 44's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 44's page at Knotilus! Visit 9 44's page at the original Knot Atlas! |
9 44 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
| Gauss code | -1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6 |
| Dowker-Thistlethwaite code | 4 8 10 -14 2 -16 -6 -18 -12 |
| Conway Notation | [22,21,2-] |
Three dimensional invariants
|
[edit Notes for 9 44's three dimensional invariants] 9_44 has girth 4. See arXiv:math.GT/0508590 and a forthcoming paper by the same authors. |
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^2-4 t+7-4 t^{-1} + t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 17, 0 } |
| Jones polynomial | [math]\displaystyle{ q^2-2 q+3-3 q^{-1} +3 q^{-2} -2 q^{-3} +2 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+3 a^2-2 z^2-2+ a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^3 z^7+a z^7+2 a^4 z^6+3 a^2 z^6+z^6+a^5 z^5-2 a^3 z^5-3 a z^5-7 a^4 z^4-10 a^2 z^4-3 z^4-3 a^5 z^3-a^3 z^3+4 a z^3+2 z^3 a^{-1} +5 a^4 z^2+10 a^2 z^2+z^2 a^{-2} +6 z^2+a^5 z+a^3 z-a z-z a^{-1} -a^4-3 a^2- a^{-2} -2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{16}+2 q^8+q^6+q^4-1- q^{-4} + q^{-6} + q^{-8} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-q^{78}+2 q^{76}-3 q^{74}+q^{72}-4 q^{68}+6 q^{66}-5 q^{64}+3 q^{62}-q^{60}-4 q^{58}+5 q^{56}-4 q^{54}+2 q^{50}-4 q^{48}+4 q^{46}-4 q^{42}+7 q^{40}-5 q^{38}+3 q^{36}-2 q^{32}+6 q^{30}-4 q^{28}+6 q^{26}-2 q^{24}+2 q^{22}+4 q^{20}-4 q^{18}+4 q^{16}-2 q^{14}+q^{12}+3 q^{10}-4 q^8+2 q^6-4 q^2+5-6 q^{-2} +2 q^{-6} -6 q^{-8} +5 q^{-10} -3 q^{-12} + q^{-14} + q^{-16} -3 q^{-18} +2 q^{-20} + q^{-24} + q^{-26} + q^{-32} + q^{-38} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{11}+q^9+q^5+ q^{-1} - q^{-3} + q^{-5} }[/math] |
| 2 | [math]\displaystyle{ q^{32}-q^{30}-2 q^{28}+2 q^{26}+q^{24}-2 q^{22}+2 q^{18}-q^{16}-q^{14}+2 q^{12}-q^8+q^6+q^4-q^2-1+3 q^{-2} -2 q^{-6} +2 q^{-8} + q^{-10} - q^{-12} }[/math] |
| 3 | [math]\displaystyle{ -q^{63}+q^{61}+2 q^{59}-3 q^{55}-3 q^{53}+3 q^{51}+4 q^{49}-4 q^{45}-3 q^{43}+3 q^{41}+5 q^{39}-q^{37}-6 q^{35}-3 q^{33}+6 q^{31}+4 q^{29}-4 q^{27}-4 q^{25}+4 q^{23}+5 q^{21}-3 q^{19}-4 q^{17}+2 q^{15}+3 q^{13}-2 q^{11}-3 q^9+3 q^5+3 q^3-2 q-4 q^{-1} +2 q^{-3} +7 q^{-5} +3 q^{-7} -7 q^{-9} -4 q^{-11} +5 q^{-13} +4 q^{-15} -2 q^{-17} -5 q^{-19} +3 q^{-23} + q^{-25} - q^{-29} }[/math] |
| 4 | [math]\displaystyle{ q^{104}-q^{102}-2 q^{100}+q^{96}+5 q^{94}+q^{92}-3 q^{90}-5 q^{88}-6 q^{86}+5 q^{84}+7 q^{82}+5 q^{80}-10 q^{76}-7 q^{74}-q^{72}+9 q^{70}+14 q^{68}+q^{66}-11 q^{64}-16 q^{62}-5 q^{60}+15 q^{58}+17 q^{56}+2 q^{54}-18 q^{52}-18 q^{50}+5 q^{48}+21 q^{46}+14 q^{44}-9 q^{42}-20 q^{40}-5 q^{38}+14 q^{36}+13 q^{34}-4 q^{32}-15 q^{30}-5 q^{28}+9 q^{26}+8 q^{24}-2 q^{22}-9 q^{20}-3 q^{18}+7 q^{16}+6 q^{14}+2 q^{12}-4 q^{10}-7 q^8-q^6+6 q^4+13 q^2+3-15 q^{-2} -15 q^{-4} - q^{-6} +22 q^{-8} +20 q^{-10} -9 q^{-12} -25 q^{-14} -15 q^{-16} +15 q^{-18} +26 q^{-20} +5 q^{-22} -14 q^{-24} -18 q^{-26} -2 q^{-28} +13 q^{-30} +9 q^{-32} -7 q^{-36} -5 q^{-38} + q^{-40} +2 q^{-42} +2 q^{-44} - q^{-48} }[/math] |
| 5 | [math]\displaystyle{ -q^{155}+q^{153}+2 q^{151}-q^{147}-3 q^{145}-3 q^{143}-q^{141}+5 q^{139}+7 q^{137}+4 q^{135}-q^{133}-7 q^{131}-11 q^{129}-8 q^{127}+5 q^{125}+11 q^{123}+13 q^{121}+9 q^{119}-4 q^{117}-16 q^{115}-20 q^{113}-10 q^{111}+6 q^{109}+24 q^{107}+29 q^{105}+13 q^{103}-16 q^{101}-37 q^{99}-34 q^{97}-8 q^{95}+32 q^{93}+50 q^{91}+32 q^{89}-13 q^{87}-54 q^{85}-54 q^{83}-12 q^{81}+43 q^{79}+67 q^{77}+38 q^{75}-25 q^{73}-67 q^{71}-53 q^{69}+3 q^{67}+59 q^{65}+62 q^{63}+13 q^{61}-46 q^{59}-62 q^{57}-22 q^{55}+32 q^{53}+54 q^{51}+25 q^{49}-23 q^{47}-45 q^{45}-23 q^{43}+18 q^{41}+34 q^{39}+17 q^{37}-13 q^{35}-26 q^{33}-10 q^{31}+12 q^{29}+19 q^{27}+8 q^{25}-9 q^{23}-16 q^{21}-10 q^{19}+4 q^{17}+17 q^{15}+17 q^{13}+6 q^{11}-14 q^9-29 q^7-21 q^5+9 q^3+41 q+40 q^{-1} +5 q^{-3} -44 q^{-5} -63 q^{-7} -27 q^{-9} +42 q^{-11} +81 q^{-13} +49 q^{-15} -23 q^{-17} -82 q^{-19} -70 q^{-21} + q^{-23} +69 q^{-25} +78 q^{-27} +19 q^{-29} -44 q^{-31} -66 q^{-33} -36 q^{-35} +18 q^{-37} +47 q^{-39} +36 q^{-41} + q^{-43} -23 q^{-45} -26 q^{-47} -11 q^{-49} +6 q^{-51} +14 q^{-53} +9 q^{-55} -3 q^{-59} -4 q^{-61} -2 q^{-63} + q^{-65} + q^{-67} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{16}+2 q^8+q^6+q^4-1- q^{-4} + q^{-6} + q^{-8} }[/math] |
| 1,1 | [math]\displaystyle{ q^{44}-2 q^{42}+4 q^{40}-8 q^{38}+11 q^{36}-12 q^{34}+12 q^{32}-12 q^{30}+4 q^{28}+2 q^{26}-8 q^{24}+16 q^{22}-19 q^{20}+22 q^{18}-20 q^{16}+20 q^{14}-14 q^{12}+10 q^{10}-2 q^8-4 q^6+8 q^4-14 q^2+14-12 q^{-2} +11 q^{-4} -4 q^{-6} +4 q^{-8} +2 q^{-10} - q^{-12} -2 q^{-16} + q^{-20} }[/math] |
| 2,0 | [math]\displaystyle{ q^{42}-q^{38}-q^{36}+q^{32}-q^{30}-q^{28}+2 q^{18}+3 q^{16}+q^{14}+q^{12}-q^8-2 q^6-q^4-2 q^2+2 q^{-2} +3 q^{-4} +2 q^{-6} +2 q^{-10} -2 q^{-14} - q^{-16} + q^{-20} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{34}-q^{32}-2 q^{26}+q^{24}-q^{22}-q^{20}+q^{18}+q^{16}+2 q^{12}+2 q^{10}+q^8+q^6+q^2-1- q^{-2} + q^{-4} -2 q^{-6} +2 q^{-10} + q^{-16} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{21}-q^{17}+2 q^{11}+2 q^9+2 q^7+q^5-q-2 q^{-1} - q^{-5} + q^{-7} + q^{-9} + q^{-11} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{44}+q^{38}-q^{36}-3 q^{34}-2 q^{32}-q^{30}-3 q^{28}-q^{26}+3 q^{24}+5 q^{22}+2 q^{20}+3 q^{18}+4 q^{16}-q^{14}-2 q^{12}-q^8-q^6+2 q^4+3 q^2+1+ q^{-4} -3 q^{-8} - q^{-10} + q^{-12} + q^{-18} + q^{-20} + q^{-22} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{26}-q^{22}-q^{20}+2 q^{14}+2 q^{12}+3 q^{10}+2 q^8+q^6-q^2-2-2 q^{-2} - q^{-6} + q^{-8} + q^{-10} + q^{-12} + q^{-14} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{34}+q^{32}-2 q^{30}+2 q^{28}-2 q^{26}+q^{24}-q^{22}+q^{20}+q^{18}-q^{16}+4 q^{14}-2 q^{12}+4 q^{10}-3 q^8+3 q^6-2 q^4+q^2-1- q^{-2} + q^{-4} -2 q^{-6} +2 q^{-8} -2 q^{-10} +2 q^{-12} + q^{-16} }[/math] |
| 1,0 | [math]\displaystyle{ q^{56}-q^{52}-q^{50}+q^{48}+q^{46}-2 q^{44}-2 q^{42}+q^{40}+2 q^{38}-2 q^{34}-q^{32}+2 q^{30}+q^{28}-q^{24}+q^{22}+q^{20}+q^{18}-q^{16}+2 q^{12}+q^{10}-q^8-q^6+q^4+2 q^2-2 q^{-2} +2 q^{-6} -2 q^{-10} - q^{-12} + q^{-14} +2 q^{-16} - q^{-20} + q^{-26} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{46}-q^{44}+q^{42}-2 q^{40}+2 q^{38}-2 q^{36}-2 q^{32}-q^{28}-q^{26}+q^{24}-q^{22}+3 q^{20}+5 q^{16}+5 q^{12}-q^{10}+3 q^8-q^6+q^4-2 q^2-1- q^{-2} -2 q^{-4} + q^{-6} -2 q^{-8} + q^{-10} - q^{-12} +3 q^{-14} + q^{-18} + q^{-22} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{80}-q^{78}+2 q^{76}-3 q^{74}+q^{72}-4 q^{68}+6 q^{66}-5 q^{64}+3 q^{62}-q^{60}-4 q^{58}+5 q^{56}-4 q^{54}+2 q^{50}-4 q^{48}+4 q^{46}-4 q^{42}+7 q^{40}-5 q^{38}+3 q^{36}-2 q^{32}+6 q^{30}-4 q^{28}+6 q^{26}-2 q^{24}+2 q^{22}+4 q^{20}-4 q^{18}+4 q^{16}-2 q^{14}+q^{12}+3 q^{10}-4 q^8+2 q^6-4 q^2+5-6 q^{-2} +2 q^{-6} -6 q^{-8} +5 q^{-10} -3 q^{-12} + q^{-14} + q^{-16} -3 q^{-18} +2 q^{-20} + q^{-24} + q^{-26} + q^{-32} + q^{-38} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^2-4 t+7-4 t^{-1} + t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^2-2 q+3-3 q^{-1} +3 q^{-2} -2 q^{-3} +2 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+3 a^2-2 z^2-2+ a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^3 z^7+a z^7+2 a^4 z^6+3 a^2 z^6+z^6+a^5 z^5-2 a^3 z^5-3 a z^5-7 a^4 z^4-10 a^2 z^4-3 z^4-3 a^5 z^3-a^3 z^3+4 a z^3+2 z^3 a^{-1} +5 a^4 z^2+10 a^2 z^2+z^2 a^{-2} +6 z^2+a^5 z+a^3 z-a z-z a^{-1} -a^4-3 a^2- a^{-2} -2 }[/math] |
Vassiliev invariants
| V2 and V3: | (0, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 5 | 1 | 1 | ||||||||||||||||
| 3 | 1 | -1 | ||||||||||||||||
| 1 | 2 | 1 | 1 | |||||||||||||||
| -1 | 2 | 2 | 0 | |||||||||||||||
| -3 | 1 | 1 | 0 | |||||||||||||||
| -5 | 1 | 2 | 1 | |||||||||||||||
| -7 | 1 | 1 | 0 | |||||||||||||||
| -9 | 1 | 1 | ||||||||||||||||
| -11 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 44]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 44]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],X[12, 17, 13, 18], X[6, 14, 7, 13]] |
In[4]:= | GaussCode[Knot[9, 44]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6] |
In[5]:= | BR[Knot[9, 44]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[9, 44]][t] |
Out[6]= | -2 4 2 |
In[7]:= | Conway[Knot[9, 44]][z] |
Out[7]= | 4 1 + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 44]} |
In[9]:= | {KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]} |
Out[9]= | {17, 0} |
In[10]:= | J=Jones[Knot[9, 44]][q] |
Out[10]= | -5 2 2 3 3 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 44]} |
In[12]:= | A2Invariant[Knot[9, 44]][q] |
Out[12]= | -16 2 -6 -4 4 6 8 |
In[13]:= | Kauffman[Knot[9, 44]][a, z] |
Out[13]= | 2-2 2 4 z 3 5 2 z 2 2 |
In[14]:= | {Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[9, 44]][q, t] |
Out[15]= | 2 1 1 1 1 1 2 1 |


