9 42: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=9_42}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=9|k=42|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,-7,6,3,-4,2,5,-9,8,-6,7,-5,9,-8/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td bgcolor=red>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 42]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 42]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], |
|||
X[18, 14, 1, 13], X[12, 18, 13, 17]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 42]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 42]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 42]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 |
|||
-1 - t + - + 2 t - t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 42]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - 2 z - z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 42]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 42]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 -2 1 2 3 |
|||
-1 + q - q + - + q - q + q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 42]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 42]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 -2 2 6 8 10 |
|||
-1 + q + q + q - q - q + q + q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 42]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 |
|||
2 2 2 z 2 6 z 2 2 6 z 3 |
|||
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + 6 a z - |
|||
2 a 2 a |
|||
a a |
|||
4 5 6 7 |
|||
4 5 z 2 4 5 z 5 6 z 2 6 z 7 |
|||
10 z - ---- - 5 a z - ---- - 5 a z + 2 z + -- + a z + -- + a z |
|||
2 a 2 a |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 42]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1 3 1 1 1 1 q 3 7 2 |
|||
- + q + q + ----- + ----- + ----- + --- + - + q t + q t |
|||
q 7 4 3 3 3 2 q t t |
|||
q t q t q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:52, 27 August 2005
|
|
|
|
Visit 9 42's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 42's page at Knotilus! Visit 9 42's page at the original Knot Atlas! |
9 42 Quick Notes |
9_42 is Alexander Stoimenow's favourite knot!
Knot presentations
| Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17 |
| Gauss code | -1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8 |
| Dowker-Thistlethwaite code | 4 8 10 -14 2 -16 -18 -6 -12 |
| Conway Notation | [22,3,2-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^2+2 t-1+2 t^{-1} - t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 7, 2 } |
| Jones polynomial | [math]\displaystyle{ q^3-q^2+q-1+ q^{-1} - q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^4+a^2 z^2+z^2 a^{-2} -4 z^2+2 a^2+2 a^{-2} -3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6-5 a z^5-5 z^5 a^{-1} -5 a^2 z^4-5 z^4 a^{-2} -10 z^4+6 a z^3+6 z^3 a^{-1} +6 a^2 z^2+6 z^2 a^{-2} +12 z^2-2 a z-2 z a^{-1} -2 a^2-2 a^{-2} -3 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{10}+q^8+q^6-q^2-1- q^{-2} + q^{-6} + q^{-8} + q^{-10} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}+q^{42}+2 q^{32}+q^{26}+q^{24}+q^{22}+q^{20}-q^{18}+q^{16}+q^{14}-q^{12}+q^{10}-q^8-q^4-2 q^2-1- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-12} - q^{-14} - q^{-16} + q^{-20} + q^{-22} + q^{-24} + q^{-26} +3 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-46} - q^{-50} - q^{-54} + q^{-56} - q^{-60} + q^{-62} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^7+ q^{-7} }[/math] |
| 2 | [math]\displaystyle{ q^{22}-q^{18}+q^6+1+ q^{-6} - q^{-18} + q^{-22} }[/math] |
| 3 | [math]\displaystyle{ q^{45}-q^{41}-q^{39}+q^{35}+q^{23}+q^{21}-q^{19}-q^{17}+q^{13}-q^9+q^5+q^3+ q^{-3} + q^{-5} - q^{-13} - q^{-15} + q^{-21} +2 q^{-23} - q^{-27} +2 q^{-31} -3 q^{-35} - q^{-37} + q^{-39} + q^{-41} }[/math] |
| 4 | [math]\displaystyle{ q^{76}-q^{72}-q^{70}-q^{68}+q^{66}+q^{64}+q^{62}-q^{58}+q^{48}+q^{46}-2 q^{42}-2 q^{40}+q^{36}+2 q^{34}-q^{30}-q^{28}+2 q^{24}+q^{22}+q^{20}-q^{18}-2 q^{16}+q^{12}+2 q^{10}-2 q^6-q^4+2+ q^{-2} - q^{-4} + q^{-8} +2 q^{-10} + q^{-12} - q^{-14} + q^{-20} - q^{-24} - q^{-34} -2 q^{-36} + q^{-40} +2 q^{-42} +2 q^{-44} - q^{-46} - q^{-48} -2 q^{-50} + q^{-52} +3 q^{-54} -2 q^{-60} - q^{-62} + q^{-68} }[/math] |
| 5 | [math]\displaystyle{ q^{115}-q^{111}-q^{109}-q^{107}+q^{103}+2 q^{101}+q^{99}-q^{95}-q^{93}-q^{91}+q^{87}+q^{81}+q^{79}-q^{75}-3 q^{73}-2 q^{71}+2 q^{67}+3 q^{65}+2 q^{63}-2 q^{59}-2 q^{57}-q^{55}+q^{53}+2 q^{51}+2 q^{49}+q^{47}-q^{45}-2 q^{43}-3 q^{41}-2 q^{39}+q^{37}+3 q^{35}+3 q^{33}+q^{31}-2 q^{29}-4 q^{27}-2 q^{25}+q^{23}+3 q^{21}+4 q^{19}+q^{17}-2 q^{15}-3 q^{13}-q^{11}+2 q^9+3 q^7+2 q^5-q^3-3 q-2 q^{-1} + q^{-3} +3 q^{-5} +2 q^{-7} -2 q^{-11} - q^{-13} + q^{-15} +2 q^{-17} + q^{-19} - q^{-21} - q^{-23} + q^{-27} - q^{-31} - q^{-33} + q^{-37} + q^{-39} + q^{-55} +2 q^{-57} + q^{-59} -2 q^{-61} -4 q^{-63} -4 q^{-65} +5 q^{-69} +6 q^{-71} + q^{-73} -5 q^{-75} -6 q^{-77} -3 q^{-79} +3 q^{-81} +6 q^{-83} +5 q^{-85} -3 q^{-89} -3 q^{-91} -2 q^{-93} + q^{-97} + q^{-99} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{10}+q^8+q^6-q^2-1- q^{-2} + q^{-6} + q^{-8} + q^{-10} }[/math] |
| 1,1 | [math]\displaystyle{ q^{28}+2 q^{24}+2 q^{20}-2 q^{18}-2 q^{16}-2 q^{14}-2 q^{12}+2 q^6+4 q^4+4 q^2+2+2 q^{-2} -2 q^{-4} -4 q^{-8} -2 q^{-12} +2 q^{-14} +2 q^{-18} +2 q^{-24} -2 q^{-26} + q^{-28} -2 q^{-30} +2 q^{-32} }[/math] |
| 2,0 | [math]\displaystyle{ q^{28}+q^{26}+q^{24}-q^{18}-q^{16}-2 q^{14}-2 q^{12}-q^{10}+q^8+3 q^6+2 q^4+3 q^2+2+ q^{-2} - q^{-4} - q^{-6} - q^{-8} - q^{-10} + q^{-16} + q^{-20} - q^{-22} - q^{-24} + q^{-28} + q^{-30} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{20}+q^{16}+q^{14}+q^{12}-q^4- q^{-4} + q^{-12} + q^{-14} + q^{-16} + q^{-20} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^{13}+q^{11}+2 q^9+q^7-q^3-2 q-2 q^{-1} - q^{-3} + q^{-7} +2 q^{-9} + q^{-11} + q^{-13} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{26}+q^{24}+2 q^{22}+2 q^{20}+2 q^{18}+q^{16}-2 q^{12}-3 q^{10}-3 q^8-2 q^6-q^4+q^2+4+4 q^{-2} +3 q^{-4} +2 q^{-6} -3 q^{-10} -3 q^{-12} -3 q^{-14} -2 q^{-16} +2 q^{-20} +3 q^{-22} +2 q^{-24} +2 q^{-26} + q^{-28} - q^{-32} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{16}+q^{14}+2 q^{12}+2 q^{10}+q^8-q^4-2 q^2-3-2 q^{-2} - q^{-4} + q^{-8} +2 q^{-10} +2 q^{-12} + q^{-14} + q^{-16} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{20}+q^{16}+q^{14}+q^{12}-q^4-2- q^{-4} + q^{-12} + q^{-14} + q^{-16} + q^{-20} }[/math] |
| 1,0 | [math]\displaystyle{ q^{34}+q^{26}+q^{18}-q^{14}+1- q^{-14} + q^{-18} + q^{-26} + q^{-34} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{26}+q^{22}+q^{20}+2 q^{18}+q^{16}+q^{14}+q^{12}-q^6-q^4-2 q^2-2 q^{-2} - q^{-4} - q^{-6} + q^{-12} + q^{-14} + q^{-16} +2 q^{-18} + q^{-20} + q^{-22} + q^{-26} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{46}+q^{42}+2 q^{32}+q^{26}+q^{24}+q^{22}+q^{20}-q^{18}+q^{16}+q^{14}-q^{12}+q^{10}-q^8-q^4-2 q^2-1- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-12} - q^{-14} - q^{-16} + q^{-20} + q^{-22} + q^{-24} + q^{-26} +3 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-46} - q^{-50} - q^{-54} + q^{-56} - q^{-60} + q^{-62} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 42"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^2+2 t-1+2 t^{-1} - t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^3-q^2+q-1+ q^{-1} - q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^4+a^2 z^2+z^2 a^{-2} -4 z^2+2 a^2+2 a^{-2} -3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6-5 a z^5-5 z^5 a^{-1} -5 a^2 z^4-5 z^4 a^{-2} -10 z^4+6 a z^3+6 z^3 a^{-1} +6 a^2 z^2+6 z^2 a^{-2} +12 z^2-2 a z-2 z a^{-1} -2 a^2-2 a^{-2} -3 }[/math] |
Vassiliev invariants
| V2 and V3: | (-2, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 9 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 7 | 1 | 1 | |||||||||||||||
| 5 | 0 | ||||||||||||||||
| 3 | 1 | 1 | 0 | ||||||||||||||
| 1 | 1 | 1 | 0 | ||||||||||||||
| -1 | 1 | 1 | 0 | ||||||||||||||
| -3 | 1 | 1 | 0 | ||||||||||||||
| -5 | 0 | ||||||||||||||||
| -7 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 42]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 42]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16],X[18, 14, 1, 13], X[12, 18, 13, 17]] |
In[4]:= | GaussCode[Knot[9, 42]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8] |
In[5]:= | BR[Knot[9, 42]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[9, 42]][t] |
Out[6]= | -2 2 2 |
In[7]:= | Conway[Knot[9, 42]][z] |
Out[7]= | 2 4 1 - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 42]} |
In[9]:= | {KnotDet[Knot[9, 42]], KnotSignature[Knot[9, 42]]} |
Out[9]= | {7, 2} |
In[10]:= | J=Jones[Knot[9, 42]][q] |
Out[10]= | -3 -2 1 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 42]} |
In[12]:= | A2Invariant[Knot[9, 42]][q] |
Out[12]= | -10 -8 -6 -2 2 6 8 10 -1 + q + q + q - q - q + q + q + q |
In[13]:= | Kauffman[Knot[9, 42]][a, z] |
Out[13]= | 2 32 2 2 z 2 6 z 2 2 6 z 3 |
In[14]:= | {Vassiliev[2][Knot[9, 42]], Vassiliev[3][Knot[9, 42]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[9, 42]][q, t] |
Out[15]= | 1 3 1 1 1 1 q 3 7 2 |



