T(21,2): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 10: | Line 10: | ||
|- valign=top |
|- valign=top |
||
|[[Image:{{PAGENAME}}.jpg]] |
|[[Image:{{PAGENAME}}.jpg]] |
||
| |
|{{Torus Knot Site Links|m=21|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-12,13,-14,15,-16,17,-18,19,-20,21,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,1,-2,3,-4,5,-6,7,-8,9,-10,11/goTop.html}} |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/21.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
{{:{{PAGENAME}} Quick Notes}} |
{{:{{PAGENAME}} Quick Notes}} |
||
Line 22: | Line 20: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>11,33,12,32</sub> X<sub>33,13,34,12</sub> X<sub>13,35,14,34</sub> X<sub>35,15,36,14</sub> X<sub>15,37,16,36</sub> X<sub>37,17,38,16</sub> X<sub>17,39,18,38</sub> X<sub>39,19,40,18</sub> X<sub>19,41,20,40</sub> X<sub>41,21,42,20</sub> X<sub>21,1,22,42</sub> X<sub>1,23,2,22</sub> X<sub>23,3,24,2</sub> X<sub>3,25,4,24</sub> X<sub>25,5,26,4</sub> X<sub>5,27,6,26</sub> X<sub>27,7,28,6</sub> X<sub>7,29,8,28</sub> X<sub>29,9,30,8</sub> X<sub>9,31,10,30</sub> X<sub>31,11,32,10</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | <math>\{-12,13,-14,15,-16,17,-18,19,-20,21,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,1,-2,3,-4,5,-6,7,-8,9,-10,11\}</math> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 22 24 26 28 30 32 34 36 38 40 42 2 4 6 8 10 12 14 16 18 20 |
|||
|} |
|||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 150: | Line 134: | ||
q t + q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
{{Category:Knot Page}} |
Revision as of 18:42, 28 August 2005
|
|
Visit [[[:Template:KnotilusURL]] T(21,2)'s page] at Knotilus!
Visit T(21,2)'s page at the original Knot Atlas! |
T(21,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X11,33,12,32 X33,13,34,12 X13,35,14,34 X35,15,36,14 X15,37,16,36 X37,17,38,16 X17,39,18,38 X39,19,40,18 X19,41,20,40 X41,21,42,20 X21,1,22,42 X1,23,2,22 X23,3,24,2 X3,25,4,24 X25,5,26,4 X5,27,6,26 X27,7,28,6 X7,29,8,28 X29,9,30,8 X9,31,10,30 X31,11,32,10 |
Gauss code | -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11 |
Dowker-Thistlethwaite code | 22 24 26 28 30 32 34 36 38 40 42 2 4 6 8 10 12 14 16 18 20 |
Conway Notation | Data:T(21,2)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(21,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 20 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (55, 385) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 20 is the signature of T(21,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | χ | |||||||||
63 | 1 | -1 | ||||||||||||||||||||||||||||||
61 | 0 | |||||||||||||||||||||||||||||||
59 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
57 | 0 | |||||||||||||||||||||||||||||||
55 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
53 | 0 | |||||||||||||||||||||||||||||||
51 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
49 | 0 | |||||||||||||||||||||||||||||||
47 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
45 | 0 | |||||||||||||||||||||||||||||||
43 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
41 | 0 | |||||||||||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
37 | 0 | |||||||||||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
33 | 0 | |||||||||||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
29 | 0 | |||||||||||||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
25 | 0 | |||||||||||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||||||||||
19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[21, 2]] |
Out[2]= | 21 |
In[3]:= | PD[TorusKnot[21, 2]] |
Out[3]= | PD[X[11, 33, 12, 32], X[33, 13, 34, 12], X[13, 35, 14, 34],X[35, 15, 36, 14], X[15, 37, 16, 36], X[37, 17, 38, 16], X[17, 39, 18, 38], X[39, 19, 40, 18], X[19, 41, 20, 40], X[41, 21, 42, 20], X[21, 1, 22, 42], X[1, 23, 2, 22], X[23, 3, 24, 2], X[3, 25, 4, 24], X[25, 5, 26, 4], X[5, 27, 6, 26], X[27, 7, 28, 6], X[7, 29, 8, 28], X[29, 9, 30, 8], X[9, 31, 10, 30],X[31, 11, 32, 10]] |
In[4]:= | GaussCode[TorusKnot[21, 2]] |
Out[4]= | GaussCode[-12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4,-5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20,-21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11] |
In[5]:= | BR[TorusKnot[21, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[21, 2]][t] |
Out[6]= | -10 -9 -8 -7 -6 -5 -4 -3 -2 1 2 |
In[7]:= | Conway[TorusKnot[21, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[21, 2]], KnotSignature[TorusKnot[21, 2]]} |
Out[9]= | {21, 20} |
In[10]:= | J=Jones[TorusKnot[21, 2]][q] |
Out[10]= | 10 12 13 14 15 16 17 18 19 20 21 22 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[21, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[21, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[21, 2]], Vassiliev[3][TorusKnot[21, 2]]} |
Out[14]= | {0, 385} |
In[15]:= | Kh[TorusKnot[21, 2]][q, t] |
Out[15]= | 19 21 23 2 27 3 27 4 31 5 31 6 35 7 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)