T(8,5): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- -->


<!-- -->
<!-- -->
Line 10: Line 10:
|- valign=top
|- valign=top
|[[Image:{{PAGENAME}}.jpg]]
|[[Image:{{PAGENAME}}.jpg]]
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/27,28,-32,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-2,-5,9,10,11,12,-16,-19,-22,-25,29,30,31,32,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-1,5,6,7,8,-12,-15,-18,-21,25,26/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
|{{Torus Knot Site Links|m=8|n=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/27,28,-32,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-2,-5,9,10,11,12,-16,-19,-22,-25,29,30,31,32,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-1,5,6,7,8,-12,-15,-18,-21,25,26/goTop.html}}

Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/8.5.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!


{{:{{PAGENAME}} Quick Notes}}
{{:{{PAGENAME}} Quick Notes}}
Line 22: Line 20:


{{Knot Presentations}}
{{Knot Presentations}}

===Knot presentations===

{|
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|style="padding-left: 1em;" | X<sub>54,16,55,15</sub> X<sub>29,17,30,16</sub> X<sub>4,18,5,17</sub> X<sub>43,19,44,18</sub> X<sub>30,56,31,55</sub> X<sub>5,57,6,56</sub> X<sub>44,58,45,57</sub> X<sub>19,59,20,58</sub> X<sub>6,32,7,31</sub> X<sub>45,33,46,32</sub> X<sub>20,34,21,33</sub> X<sub>59,35,60,34</sub> X<sub>46,8,47,7</sub> X<sub>21,9,22,8</sub> X<sub>60,10,61,9</sub> X<sub>35,11,36,10</sub> X<sub>22,48,23,47</sub> X<sub>61,49,62,48</sub> X<sub>36,50,37,49</sub> X<sub>11,51,12,50</sub> X<sub>62,24,63,23</sub> X<sub>37,25,38,24</sub> X<sub>12,26,13,25</sub> X<sub>51,27,52,26</sub> X<sub>38,64,39,63</sub> X<sub>13,1,14,64</sub> X<sub>52,2,53,1</sub> X<sub>27,3,28,2</sub> X<sub>14,40,15,39</sub> X<sub>53,41,54,40</sub> X<sub>28,42,29,41</sub> X<sub>3,43,4,42</sub>
|-
|'''[[Gauss Codes|Gauss code]]'''
|style="padding-left: 1em;" | <math>\{27,28,-32,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-2,-5,9,10,11,12,-16,-19,-22,-25,29,30,31,32,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-1,5,6,7,8,-12,-15,-18,-21,25,26\}</math>
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|style="padding-left: 1em;" | 52 -42 -56 46 60 -50 -64 54 4 -58 -8 62 12 -2 -16 6 20 -10 -24 14 28 -18 -32 22 36 -26 -40 30 44 -34 -48 38
|}

{{Polynomial Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}
Line 164: Line 148:
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

{{Category:Knot Page}}

Revision as of 18:42, 28 August 2005


T(31,2).jpg

T(31,2)

T(16,3).jpg

T(16,3)

T(8,5).jpg Visit [[[:Template:KnotilusURL]] T(8,5)'s page] at Knotilus!

Visit T(8,5)'s page at the original Knot Atlas!

T(8,5) Quick Notes


T(8,5) Further Notes and Views

Knot presentations

Planar diagram presentation X54,16,55,15 X29,17,30,16 X4,18,5,17 X43,19,44,18 X30,56,31,55 X5,57,6,56 X44,58,45,57 X19,59,20,58 X6,32,7,31 X45,33,46,32 X20,34,21,33 X59,35,60,34 X46,8,47,7 X21,9,22,8 X60,10,61,9 X35,11,36,10 X22,48,23,47 X61,49,62,48 X36,50,37,49 X11,51,12,50 X62,24,63,23 X37,25,38,24 X12,26,13,25 X51,27,52,26 X38,64,39,63 X13,1,14,64 X52,2,53,1 X27,3,28,2 X14,40,15,39 X53,41,54,40 X28,42,29,41 X3,43,4,42
Gauss code 27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26
Dowker-Thistlethwaite code 52 -42 -56 46 60 -50 -64 54 4 -58 -8 62 12 -2 -16 6 20 -10 -24 14 28 -18 -32 22 36 -26 -40 30 44 -34 -48 38
Conway Notation Data:T(8,5)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 20 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(8,5)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(8,5)/Kauffman Polynomial
The A2 invariant Data:T(8,5)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(8,5)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (63, 420)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(8,5)/V 2,1 Data:T(8,5)/V 3,1 Data:T(8,5)/V 4,1 Data:T(8,5)/V 4,2 Data:T(8,5)/V 4,3 Data:T(8,5)/V 5,1 Data:T(8,5)/V 5,2 Data:T(8,5)/V 5,3 Data:T(8,5)/V 5,4 Data:T(8,5)/V 6,1 Data:T(8,5)/V 6,2 Data:T(8,5)/V 6,3 Data:T(8,5)/V 6,4 Data:T(8,5)/V 6,5 Data:T(8,5)/V 6,6 Data:T(8,5)/V 6,7 Data:T(8,5)/V 6,8 Data:T(8,5)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 20 is the signature of T(8,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213141516171819χ
57                  110
55                11  0
53                121 0
51              131   -1
49            12 11   -1
47             32     -1
45           32       -1
43         2  2       0
41       1 12         0
39     1 12           0
37     11 1           1
35   11 1             1
33    1               1
31  1                 1
291                   1
271                   1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[8, 5]]
Out[2]=  
32
In[3]:=
PD[TorusKnot[8, 5]]
Out[3]=  
PD[X[54, 16, 55, 15], X[29, 17, 30, 16], X[4, 18, 5, 17], 
 X[43, 19, 44, 18], X[30, 56, 31, 55], X[5, 57, 6, 56], 

 X[44, 58, 45, 57], X[19, 59, 20, 58], X[6, 32, 7, 31], 

 X[45, 33, 46, 32], X[20, 34, 21, 33], X[59, 35, 60, 34], 

 X[46, 8, 47, 7], X[21, 9, 22, 8], X[60, 10, 61, 9], 

 X[35, 11, 36, 10], X[22, 48, 23, 47], X[61, 49, 62, 48], 

 X[36, 50, 37, 49], X[11, 51, 12, 50], X[62, 24, 63, 23], 

 X[37, 25, 38, 24], X[12, 26, 13, 25], X[51, 27, 52, 26], 

 X[38, 64, 39, 63], X[13, 1, 14, 64], X[52, 2, 53, 1], 

 X[27, 3, 28, 2], X[14, 40, 15, 39], X[53, 41, 54, 40], 

X[28, 42, 29, 41], X[3, 43, 4, 42]]
In[4]:=
GaussCode[TorusKnot[8, 5]]
Out[4]=  
GaussCode[27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 
 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 

 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17, 

18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26]
In[5]:=
BR[TorusKnot[8, 5]]
Out[5]=  
BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 
   2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]
In[6]:=
alex = Alexander[TorusKnot[8, 5]][t]
Out[6]=  
      -14    -13    -9    -8    -6    -5    -4    -3   1        3

-1 + t - t + t - t + t - t + t - t + - + t - t +

                                                      t

  4    5    6    8    9    13    14
t - t + t - t + t - t + t
In[7]:=
Conway[TorusKnot[8, 5]][z]
Out[7]=  
        2         4         6          8          10           12

1 + 63 z + 1092 z + 8169 z + 32055 z + 73876 z + 107849 z +

         14          16          18          20         22        24
 104771 z   + 69785 z   + 32320 z   + 10395 z   + 2277 z   + 324 z   + 

     26    28
27 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[8, 5]], KnotSignature[TorusKnot[8, 5]]}
Out[9]=  
{5, 20}
In[10]:=
J=Jones[TorusKnot[8, 5]][q]
Out[10]=  
 14    16    18    23    25
q   + q   + q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[8, 5]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[8, 5]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[8, 5]], Vassiliev[3][TorusKnot[8, 5]]}
Out[14]=  
{0, 420}
In[15]:=
Kh[TorusKnot[8, 5]][q, t]
Out[15]=  
 27    29    31  2    35  3    33  4    35  4    37  5    39  5

q + q + q t + q t + q t + q t + q t + q t +

  35  6    37  6    39  7    41  7    37  8      39  8    41  9
 q   t  + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 

    43  9      41  10      45  11      43  12      45  12    49  12
 2 q   t  + 2 q   t   + 3 q   t   + 2 q   t   + 2 q   t   + q   t   + 

    47  13      49  13      47  14    51  14    49  15      51  15
 3 q   t   + 2 q   t   + 2 q   t   + q   t   + q   t   + 3 q   t   + 

  49  16    51  16    53  16    55  16      53  17    55  17
 q   t   + q   t   + q   t   + q   t   + 2 q   t   + q   t   + 

  53  18    57  18    57  19
q t + q t + q t
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)