T(16,3): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 10: | Line 10: | ||
|- valign=top |
|- valign=top |
||
|[[Image:{{PAGENAME}}.jpg]] |
|[[Image:{{PAGENAME}}.jpg]] |
||
| |
|{{Torus Knot Site Links|m=16|n=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-5,7,8,-10,-11,13,14,-16,-17,19,20,-22,-23,25,26,-28,-29,31,32,-2,-3,5,6,-8,-9,11,12,-14,-15,17,18,-20,-21,23,24,-26,-27,29,30,-32,-1,3,4,-6,-7,9,10,-12,-13,15,16,-18,-19,21,22,-24,-25,27,28,-30,-31,1,2,-4/goTop.html}} |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/16.3.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
{{:{{PAGENAME}} Quick Notes}} |
{{:{{PAGENAME}} Quick Notes}} |
||
Line 22: | Line 20: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>41,63,42,62</sub> X<sub>20,64,21,63</sub> X<sub>21,43,22,42</sub> X<sub>64,44,1,43</sub> X<sub>1,23,2,22</sub> X<sub>44,24,45,23</sub> X<sub>45,3,46,2</sub> X<sub>24,4,25,3</sub> X<sub>25,47,26,46</sub> X<sub>4,48,5,47</sub> X<sub>5,27,6,26</sub> X<sub>48,28,49,27</sub> X<sub>49,7,50,6</sub> X<sub>28,8,29,7</sub> X<sub>29,51,30,50</sub> X<sub>8,52,9,51</sub> X<sub>9,31,10,30</sub> X<sub>52,32,53,31</sub> X<sub>53,11,54,10</sub> X<sub>32,12,33,11</sub> X<sub>33,55,34,54</sub> X<sub>12,56,13,55</sub> X<sub>13,35,14,34</sub> X<sub>56,36,57,35</sub> X<sub>57,15,58,14</sub> X<sub>36,16,37,15</sub> X<sub>37,59,38,58</sub> X<sub>16,60,17,59</sub> X<sub>17,39,18,38</sub> X<sub>60,40,61,39</sub> X<sub>61,19,62,18</sub> X<sub>40,20,41,19</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | <math>\{-5,7,8,-10,-11,13,14,-16,-17,19,20,-22,-23,25,26,-28,-29,31,32,-2,-3,5,6,-8,-9,11,12,-14,-15,17,18,-20,-21,23,24,-26,-27,29,30,-32,-1,3,4,-6,-7,9,10,-12,-13,15,16,-18,-19,21,22,-24,-25,27,28,-30,-31,1,2,-4\}</math> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 22 -24 26 -28 30 -32 34 -36 38 -40 42 -44 46 -48 50 -52 54 -56 58 -60 62 -64 2 -4 6 -8 10 -12 14 -16 18 -20 |
|||
|} |
|||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 163: | Line 147: | ||
q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
{{Category:Knot Page}} |
Revision as of 18:43, 28 August 2005
|
|
Visit [[[:Template:KnotilusURL]] T(16,3)'s page] at Knotilus!
Visit T(16,3)'s page at the original Knot Atlas! |
T(16,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X41,63,42,62 X20,64,21,63 X21,43,22,42 X64,44,1,43 X1,23,2,22 X44,24,45,23 X45,3,46,2 X24,4,25,3 X25,47,26,46 X4,48,5,47 X5,27,6,26 X48,28,49,27 X49,7,50,6 X28,8,29,7 X29,51,30,50 X8,52,9,51 X9,31,10,30 X52,32,53,31 X53,11,54,10 X32,12,33,11 X33,55,34,54 X12,56,13,55 X13,35,14,34 X56,36,57,35 X57,15,58,14 X36,16,37,15 X37,59,38,58 X16,60,17,59 X17,39,18,38 X60,40,61,39 X61,19,62,18 X40,20,41,19 |
Gauss code | -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 1, 2, -4 |
Dowker-Thistlethwaite code | 22 -24 26 -28 30 -32 34 -36 38 -40 42 -44 46 -48 50 -52 54 -56 58 -60 62 -64 2 -4 6 -8 10 -12 14 -16 18 -20 |
Conway Notation | Data:T(16,3)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(16,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 22 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(16,3)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(16,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (85, 680) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 22 is the signature of T(16,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | χ | |||||||||
65 | 1 | -1 | ||||||||||||||||||||||||||||||
63 | 1 | -1 | ||||||||||||||||||||||||||||||
61 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
59 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
55 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
53 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
51 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
49 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
47 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
45 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
43 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
35 | 1 | 1 | ||||||||||||||||||||||||||||||
33 | 1 | 1 | ||||||||||||||||||||||||||||||
31 | 1 | 1 | ||||||||||||||||||||||||||||||
29 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[16, 3]] |
Out[2]= | 32 |
In[3]:= | PD[TorusKnot[16, 3]] |
Out[3]= | PD[X[41, 63, 42, 62], X[20, 64, 21, 63], X[21, 43, 22, 42],X[64, 44, 1, 43], X[1, 23, 2, 22], X[44, 24, 45, 23], X[45, 3, 46, 2], X[24, 4, 25, 3], X[25, 47, 26, 46], X[4, 48, 5, 47], X[5, 27, 6, 26], X[48, 28, 49, 27], X[49, 7, 50, 6], X[28, 8, 29, 7], X[29, 51, 30, 50], X[8, 52, 9, 51], X[9, 31, 10, 30], X[52, 32, 53, 31], X[53, 11, 54, 10], X[32, 12, 33, 11], X[33, 55, 34, 54], X[12, 56, 13, 55], X[13, 35, 14, 34], X[56, 36, 57, 35], X[57, 15, 58, 14], X[36, 16, 37, 15], X[37, 59, 38, 58], X[16, 60, 17, 59], X[17, 39, 18, 38],X[60, 40, 61, 39], X[61, 19, 62, 18], X[40, 20, 41, 19]] |
In[4]:= | GaussCode[TorusKnot[16, 3]] |
Out[4]= | GaussCode[-5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25,26, -28, -29, 31, 32, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 1, 2,-4] |
In[5]:= | BR[TorusKnot[16, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[16, 3]][t] |
Out[6]= | -15 -14 -12 -11 -9 -8 -6 -5 -3 -2 |
In[7]:= | Conway[TorusKnot[16, 3]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[16, 3]], KnotSignature[TorusKnot[16, 3]]} |
Out[9]= | {3, 22} |
In[10]:= | J=Jones[TorusKnot[16, 3]][q] |
Out[10]= | 15 17 32 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[16, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[16, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[16, 3]], Vassiliev[3][TorusKnot[16, 3]]} |
Out[14]= | {0, 680} |
In[15]:= | Kh[TorusKnot[16, 3]][q, t] |
Out[15]= | 29 31 33 2 37 3 35 4 37 4 39 5 41 5 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)