9 22: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=22|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-3,4,-2,5,-9,8,-6,7,-5,9,-8/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=22|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-3,4,-2,5,-9,8,-6,7,-5,9,-8/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 132: Line 124:
2 q t + q t</nowiki></pre></td></tr>
2 q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:07, 28 August 2005

9 21.gif

9_21

9 23.gif

9_23

9 22.gif Visit 9 22's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 22's page at Knotilus!

Visit 9 22's page at the original Knot Atlas!

9 22 Quick Notes


9 22 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
Gauss code 1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -9, 8, -6, 7, -5, 9, -8
Dowker-Thistlethwaite code 4 8 10 14 2 16 18 6 12
Conway Notation [211,3,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-8]
Hyperbolic Volume 10.6207
A-Polynomial See Data:9 22/A-polynomial

[edit Notes for 9 22's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 22's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 22. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
13         1-1
11        2 2
9       31 -2
7      42  2
5     33   0
3    44    0
1   34     1
-1  13      -2
-3 13       2
-5 1        -1
-71         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 22]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 22]]
Out[3]=  
PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], 

X[18, 14, 1, 13], X[12, 18, 13, 17]]
In[4]:=
GaussCode[Knot[9, 22]]
Out[4]=  
GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -9, 8, -6, 7, -5, 9, -8]
In[5]:=
BR[Knot[9, 22]]
Out[5]=  
BR[4, {-1, 2, -1, 2, -3, 2, 2, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 22]][t]
Out[6]=  
       -3   5    10             2    3

-11 + t - -- + -- + 10 t - 5 t + t

            2   t
t
In[7]:=
Conway[Knot[9, 22]][z]
Out[7]=  
     2    4    6
1 - z  + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 22], Knot[11, NonAlternating, 128]}
In[9]:=
{KnotDet[Knot[9, 22]], KnotSignature[Knot[9, 22]]}
Out[9]=  
{43, 2}
In[10]:=
J=Jones[Knot[9, 22]][q]
Out[10]=  
      -3   2    4            2      3      4      5    6

-6 + q - -- + - + 7 q - 7 q + 7 q - 5 q + 3 q - q

           2   q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 22], Knot[11, NonAlternating, 3]}
In[12]:=
A2Invariant[Knot[9, 22]][q]
Out[12]=  
      -10    -8    -4   2     4      6      10    14    16    18

-1 + q + q + q - -- - q + 3 q + 2 q - q + q - q

                        2
q
In[13]:=
Kauffman[Knot[9, 22]][a, z]
Out[13]=  
                                                        2      2
     -4   4       2   z    z    2 z               2   z    5 z

-4 - a - -- - 2 a + -- + -- - --- - 2 a z + 16 z - -- + ---- +

           2           5    3    a                     6     4
          a           a    a                          a     a

     2              3      3      3       3                       4
 17 z       2  2   z    4 z    2 z    10 z         3       4   3 z
 ----- + 5 a  z  + -- - ---- - ---- + ----- + 7 a z  - 15 z  + ---- - 
   2                7     5      3      a                        6
  a                a     a      a                               a

    4       4                5      5       5                      6
 9 z    23 z       2  4   5 z    4 z    16 z         5      6   6 z
 ---- - ----- - 4 a  z  + ---- - ---- - ----- - 7 a z  + 2 z  + ---- + 
   4      2                 5      3      a                       4
  a      a                 a      a                              a

    6              7      7                  8
 7 z     2  6   4 z    6 z         7    8   z
 ---- + a  z  + ---- + ---- + 2 a z  + z  + --
   2              3     a                    2
a a a
In[14]:=
{Vassiliev[2][Knot[9, 22]], Vassiliev[3][Knot[9, 22]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[Knot[9, 22]][q, t]
Out[15]=  
         3     1       1       1       3      1      3    3 q

4 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +

             7  4    5  3    3  3    3  2      2   q t    t
            q  t    q  t    q  t    q  t    q t

    3        5        5  2      7  2      7  3      9  3    9  4
 4 q  t + 3 q  t + 3 q  t  + 4 q  t  + 2 q  t  + 3 q  t  + q  t  + 

    11  4    13  5
2 q t + q t