8 20: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
||
| Line 44: | Line 37: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 108: | Line 100: | ||
q t q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 19:15, 28 August 2005
|
|
|
|
Visit 8 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 20's page at Knotilus! Visit 8 20's page at the original Knot Atlas! 8_20 is also known as the pretzel knot P(3,-3,2). Its complement contains no complete totally geodesic immersed surfaces.[citation needed] This appears to be the Ashley/oysterman stopper knot of practical knot tying. |
The Oysterman's stopper[1] |
Knot presentations
| Planar diagram presentation | X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837 |
| Gauss code | 1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4 |
| Dowker-Thistlethwaite code | 4 8 -12 2 -14 -6 -16 -10 |
| Conway Notation | [3,21,2-] |
Three dimensional invariants
|
[edit Notes for 8 20's three dimensional invariants]
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2-2 t+3-2 t^{-1} + t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 9, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+2- q^{-1} +2 q^{-2} - q^{-3} + q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-2 a^4+z^4 a^2+4 z^2 a^2+4 a^2-z^2-1} |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{63}+q^{59}+q^{57}-q^{53}+q^{49}+q^{47}-q^{43}-q^{41}-q^{35}-2 q^{33}+q^{29}+q^{27}-q^{25}+q^{21}-q^{17}+q^{15}+q^{13}+q^5+2 q^3+2 q+2 q^{-7} - q^{-9} -2 q^{-11} - q^{-13} + q^{-17} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{104}-q^{100}-q^{98}-q^{96}+q^{94}+q^{92}+q^{90}-2 q^{86}-q^{84}+q^{80}+2 q^{78}+q^{76}-q^{72}-q^{70}+q^{68}+2 q^{66}+q^{64}-q^{62}-3 q^{60}-2 q^{58}+2 q^{54}+q^{52}-2 q^{50}-2 q^{48}+2 q^{44}+2 q^{42}-q^{40}-2 q^{38}+q^{34}+q^{32}-q^{30}-q^{28}-q^{20}-q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^4+3 q^2+4+2 q^{-2} - q^{-4} -4 q^{-6} -2 q^{-8} +3 q^{-10} +2 q^{-12} - q^{-14} -4 q^{-16} -3 q^{-18} + q^{-20} +2 q^{-22} +2 q^{-24} - q^{-28} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{155}+q^{151}+q^{149}+q^{147}-q^{143}-2 q^{141}-q^{139}+q^{135}+2 q^{133}+2 q^{131}-2 q^{127}-2 q^{125}-2 q^{123}-q^{121}+q^{119}+2 q^{117}+2 q^{115}+q^{113}-q^{111}-3 q^{109}-2 q^{107}+3 q^{103}+4 q^{101}+3 q^{99}-3 q^{95}-4 q^{93}-2 q^{91}+2 q^{89}+4 q^{87}+3 q^{85}-q^{83}-4 q^{81}-5 q^{79}-2 q^{77}+3 q^{75}+4 q^{73}+2 q^{71}-q^{69}-4 q^{67}-2 q^{65}+q^{63}+4 q^{61}+3 q^{59}-3 q^{55}-3 q^{53}+2 q^{49}+2 q^{47}-3 q^{43}-2 q^{41}+q^{37}-2 q^{33}-2 q^{31}+q^{27}+q^{25}+q^{15}+2 q^{13}+3 q^{11}+3 q^9+2 q^7-q^5-2 q^3+3 q^{-1} +5 q^{-3} +5 q^{-5} - q^{-7} -7 q^{-9} -7 q^{-11} -2 q^{-13} +3 q^{-15} +7 q^{-17} +3 q^{-19} -3 q^{-21} -6 q^{-23} -4 q^{-25} + q^{-27} +3 q^{-29} +3 q^{-31} + q^{-33} - q^{-35} - q^{-37} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{216}-q^{212}-q^{210}-q^{208}+2 q^{202}+2 q^{200}+q^{198}-q^{194}-2 q^{192}-3 q^{190}-q^{188}+2 q^{184}+3 q^{182}+3 q^{180}+2 q^{178}-q^{176}-2 q^{174}-3 q^{172}-3 q^{170}-2 q^{168}+3 q^{164}+4 q^{162}+3 q^{160}+q^{158}-2 q^{156}-5 q^{154}-6 q^{152}-3 q^{150}+q^{148}+4 q^{146}+6 q^{144}+6 q^{142}+2 q^{140}-4 q^{138}-6 q^{136}-6 q^{134}-3 q^{132}+3 q^{130}+8 q^{128}+8 q^{126}+4 q^{124}-q^{122}-7 q^{120}-9 q^{118}-5 q^{116}+q^{114}+6 q^{112}+7 q^{110}+5 q^{108}-2 q^{106}-8 q^{104}-8 q^{102}-4 q^{100}+2 q^{98}+7 q^{96}+9 q^{94}+4 q^{92}-3 q^{90}-7 q^{88}-6 q^{86}-q^{84}+4 q^{82}+8 q^{80}+5 q^{78}-2 q^{76}-6 q^{74}-5 q^{72}-q^{70}+3 q^{68}+6 q^{66}+3 q^{64}-3 q^{62}-5 q^{60}-4 q^{58}-q^{56}+2 q^{54}+2 q^{52}-3 q^{48}-2 q^{46}+q^{42}+q^{40}-q^{36}-2 q^{34}-q^{32}+q^{30}+2 q^{28}+2 q^{26}+2 q^{24}+q^{22}-q^{18}-2 q^{16}-q^{14}+q^{12}+4 q^{10}+6 q^8+6 q^6+2 q^4-3 q^2-6-5 q^{-2} -2 q^{-4} +6 q^{-6} +11 q^{-8} +9 q^{-10} + q^{-12} -8 q^{-14} -12 q^{-16} -13 q^{-18} -2 q^{-20} +10 q^{-22} +12 q^{-24} +7 q^{-26} - q^{-28} -7 q^{-30} -11 q^{-32} -6 q^{-34} + q^{-36} +5 q^{-38} +5 q^{-40} +4 q^{-42} +2 q^{-44} -2 q^{-46} - q^{-48} - q^{-50} - q^{-52} - q^{-54} + q^{-58} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}-q^{14}-q^{12}+2 q^8+2 q^6+2 q^4+q^2- q^{-4} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}+2 q^{40}-2 q^{38}+2 q^{36}-2 q^{34}-2 q^{30}-4 q^{28}-4 q^{24}+2 q^{22}-3 q^{20}+4 q^{18}+4 q^{14}+q^{12}+2 q^{10}+4 q^8+5 q^4+2- q^{-4} -2 q^{-6} -2 q^{-8} + q^{-12} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}+q^{40}+q^{38}-q^{32}-2 q^{30}-4 q^{28}-4 q^{26}-3 q^{24}-q^{22}+2 q^{20}+3 q^{18}+5 q^{16}+3 q^{14}+3 q^{12}+q^{10}+q^8+q^4- q^{-8} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}+q^{30}-q^{26}-2 q^{24}-4 q^{22}-4 q^{20}-3 q^{18}+2 q^{14}+6 q^{12}+6 q^{10}+6 q^8+3 q^6+q^4-q^2-2-2 q^{-2} - q^{-4} - q^{-6} + q^{-10} } |
| 1,0,0 | |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}+2 q^{52}+q^{48}-q^{44}+q^{42}-2 q^{40}+q^{38}-4 q^{36}-2 q^{34}-6 q^{32}-5 q^{30}-5 q^{28}-6 q^{26}-2 q^{22}+6 q^{20}+5 q^{18}+10 q^{16}+9 q^{14}+9 q^{12}+8 q^{10}+2 q^8+3 q^6-2 q^4-3- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-16} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}+q^{42}+2 q^{40}+2 q^{38}+q^{36}-q^{34}-3 q^{32}-6 q^{30}-9 q^{28}-9 q^{26}-7 q^{24}-3 q^{22}+q^{20}+8 q^{18}+12 q^{16}+13 q^{14}+12 q^{12}+9 q^{10}+3 q^8-q^6-4 q^4-5 q^2-5-3 q^{-2} - q^{-4} + q^{-10} + q^{-12} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}-2 q^{22}-2 q^{20}-q^{18}+2 q^{14}+3 q^{12}+4 q^{10}+3 q^8+2 q^6+q^4-1- q^{-2} - q^{-6} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}-q^{30}-q^{26}+q^{18}+2 q^{14}+2 q^{10}+q^6+q^4+q^2+ q^{-4} - q^{-6} - q^{-10} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}+q^{48}-q^{44}-q^{42}-q^{38}-2 q^{36}-2 q^{34}-2 q^{32}-q^{30}-q^{28}+2 q^{22}+2 q^{20}+3 q^{18}+2 q^{16}+3 q^{14}+3 q^{12}+2 q^{10}+q^6-1- q^{-2} - q^{-4} - q^{-8} - q^{-10} + q^{-16} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}+q^{42}+q^{38}-q^{36}-2 q^{34}-3 q^{32}-4 q^{30}-4 q^{28}-4 q^{26}-2 q^{24}-q^{22}+3 q^{20}+4 q^{18}+7 q^{16}+6 q^{14}+7 q^{12}+4 q^{10}+3 q^8+q^6-q^4-2 q^2-2-2 q^{-2} -2 q^{-4} - q^{-8} + q^{-14} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}+q^{76}-q^{74}-2 q^{68}+q^{66}-q^{64}-q^{62}-q^{60}-2 q^{58}-3 q^{52}-q^{50}-q^{48}+q^{44}-2 q^{42}+q^{40}+q^{38}+2 q^{36}+q^{34}+2 q^{30}+2 q^{28}+3 q^{26}+2 q^{22}+3 q^{20}+q^{18}+q^{16}+q^{14}+3 q^{10}-2 q^6+q^4+1- q^{-2} -2 q^{-4} - q^{-12} - q^{-14} - q^{-20} + q^{-24} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2-2 t+3-2 t^{-1} + t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+2- q^{-1} +2 q^{-2} - q^{-3} + q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-2 a^4+z^4 a^2+4 z^2 a^2+4 a^2-z^2-1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
| V2 and V3: | (2, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 8 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[8, 20]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 20]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1], X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[8, 20]] |
Out[4]= | GaussCode[1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4] |
In[5]:= | BR[Knot[8, 20]] |
Out[5]= | BR[3, {1, 1, 1, -2, -1, -1, -1, -2}] |
In[6]:= | alex = Alexander[Knot[8, 20]][t] |
Out[6]= | -2 2 2 |
In[7]:= | Conway[Knot[8, 20]][z] |
Out[7]= | 2 4 1 + 2 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73],
Knot[11, NonAlternating, 74]} |
In[9]:= | {KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]} |
Out[9]= | {9, 0} |
In[10]:= | J=Jones[Knot[8, 20]][q] |
Out[10]= | -5 -4 -3 2 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 20]} |
In[12]:= | A2Invariant[Knot[8, 20]][q] |
Out[12]= | -16 -14 -12 2 2 2 -2 4 |
In[13]:= | Kauffman[Knot[8, 20]][a, z] |
Out[13]= | 2 4 z 3 5 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[8, 20]][q, t] |
Out[15]= | 2 1 1 1 1 1 1 3 |




