9 2: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
Line 47: | Line 40: | ||
<tr align=center><td>-19</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 116: | Line 108: | ||
q t q t q t q t q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t q t q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 20:15, 28 August 2005
|
|
![]() |
Visit 9 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 2's page at Knotilus! Visit 9 2's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,18,6,1 X7,16,8,17 X9,14,10,15 X13,10,14,11 X15,8,16,9 X17,6,18,7 X11,2,12,3 |
Gauss code | -1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3 |
Dowker-Thistlethwaite code | 4 12 18 16 14 2 10 8 6 |
Conway Notation | [72] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t-7+4 t^{-1} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 15, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} - q^{-2} +2 q^{-3} -2 q^{-4} +2 q^{-5} -2 q^{-6} +2 q^{-7} - q^{-8} + q^{-9} - q^{-10} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{10}+z^2 a^8+a^8+z^2 a^6+z^2 a^4+z^2 a^2+a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-4 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+11 z^4 a^{10}-7 z^2 a^{10}+a^{10}+2 z^7 a^9-10 z^5 a^9+13 z^3 a^9-4 z a^9+z^8 a^8-5 z^6 a^8+8 z^4 a^8-6 z^2 a^8+a^8+z^7 a^7-3 z^5 a^7+z^3 a^7+z^6 a^6-2 z^4 a^6+z^5 a^5-z^3 a^5+z^4 a^4+z^3 a^3+z^2 a^2-a^2} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}+q^{24}+q^{22}+q^8+q^6+q^2} |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}+q^{15}+q^5+q} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{56}-q^{50}+q^{46}-q^{30}-q^{28}+q^{18}+q^{16}+q^{14}+q^8+q^2} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{117}+q^{113}+q^{111}-q^{107}+q^{103}-q^{99}-q^{97}+q^{93}+q^{73}+q^{71}-q^{67}-q^{61}-q^{59}-q^{53}+q^{49}+q^{47}-q^{43}-q^{41}-q^{39}+q^{37}-q^{33}-q^{31}+q^{29}+2 q^{27}-q^{23}+q^{21}+2 q^{19}+q^{17}+q^{11}+q^3} |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}+q^{24}+q^{22}+q^8+q^6+q^2} |
1,1 | |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}+q^{80}+q^{78}-q^{76}-q^{74}-q^{72}-q^{70}-q^{68}-q^{66}+q^{64}+q^{62}+q^{60}-q^{44}-2 q^{42}-2 q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+2 q^{26}+q^{24}+q^{20}+q^{18}+q^{16}+q^{12}+q^{10}+q^4} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}-q^{46}-q^{42}+q^{38}+q^{36}+q^{34}+q^{32}+q^{30}+q^{16}+q^{12}+2 q^{10}+q^8+q^4} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{43}-q^{41}-q^{39}+q^{33}+q^{31}+q^{29}+q^{11}+q^9+q^7+q^3} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{66}-q^{62}-q^{58}+q^{56}-q^{54}+q^{52}+q^{50}+q^{46}+q^{42}-2 q^{40}+q^{38}-q^{36}+q^{34}-q^{32}+q^{30}+q^{16}+q^{12}+q^8+q^4} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{108}+q^{100}-q^{96}-q^{94}-q^{88}-q^{86}+q^{82}-q^{76}-q^{68}-q^{66}+q^{56}+q^{54}+q^{48}+q^{46}+q^{26}+q^{18}+q^{16}+q^{14}+q^6} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+q^{152}-q^{150}+q^{142}-2 q^{140}+q^{138}-q^{136}-q^{134}-2 q^{130}-q^{128}-q^{126}-q^{124}-q^{118}+q^{112}-q^{108}+q^{106}+q^{104}+2 q^{102}+q^{98}+q^{94}+q^{92}-2 q^{90}+q^{88}+q^{86}+q^{76}-q^{72}+q^{66}-q^{62}-q^{52}+q^{48}+q^{38}+q^{34}+q^{28}+q^{24}+q^{20}+q^{14}+q^{10}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t-7+4 t^{-1} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} - q^{-2} +2 q^{-3} -2 q^{-4} +2 q^{-5} -2 q^{-6} +2 q^{-7} - q^{-8} + q^{-9} - q^{-10} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{10}+z^2 a^8+a^8+z^2 a^6+z^2 a^4+z^2 a^2+a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-4 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+11 z^4 a^{10}-7 z^2 a^{10}+a^{10}+2 z^7 a^9-10 z^5 a^9+13 z^3 a^9-4 z a^9+z^8 a^8-5 z^6 a^8+8 z^4 a^8-6 z^2 a^8+a^8+z^7 a^7-3 z^5 a^7+z^3 a^7+z^6 a^6-2 z^4 a^6+z^5 a^5-z^3 a^5+z^4 a^4+z^3 a^3+z^2 a^2-a^2} |
Vassiliev invariants
V2 and V3: | (4, -10) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 9 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 2]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 2]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 18, 6, 1], X[7, 16, 8, 17],X[9, 14, 10, 15], X[13, 10, 14, 11], X[15, 8, 16, 9],X[17, 6, 18, 7], X[11, 2, 12, 3]] |
In[4]:= | GaussCode[Knot[9, 2]] |
Out[4]= | GaussCode[-1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3] |
In[5]:= | BR[Knot[9, 2]] |
Out[5]= | BR[5, {-1, -1, -1, -2, 1, -2, -3, 2, -3, -4, 3, -4}] |
In[6]:= | alex = Alexander[Knot[9, 2]][t] |
Out[6]= | 4 |
In[7]:= | Conway[Knot[9, 2]][z] |
Out[7]= | 2 1 + 4 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 4], Knot[9, 2]} |
In[9]:= | {KnotDet[Knot[9, 2]], KnotSignature[Knot[9, 2]]} |
Out[9]= | {15, -2} |
In[10]:= | J=Jones[Knot[9, 2]][q] |
Out[10]= | -10 -9 -8 2 2 2 2 2 -2 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 2], Knot[11, NonAlternating, 13]} |
In[12]:= | A2Invariant[Knot[9, 2]][q] |
Out[12]= | -32 -30 -24 -22 -8 -6 -2 -q - q + q + q + q + q + q |
In[13]:= | Kauffman[Knot[9, 2]][a, z] |
Out[13]= | 2 8 10 9 11 2 2 8 2 10 2 |
In[14]:= | {Vassiliev[2][Knot[9, 2]], Vassiliev[3][Knot[9, 2]]} |
Out[14]= | {0, -10} |
In[15]:= | Kh[Knot[9, 2]][q, t] |
Out[15]= | -3 1 1 1 1 1 1 1 |