9 2

From Knot Atlas
Jump to navigationJump to search

9 1.gif

9_1

9 3.gif

9_3

9 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 2 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,18,6,1 X7,16,8,17 X9,14,10,15 X13,10,14,11 X15,8,16,9 X17,6,18,7 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3
Dowker-Thistlethwaite code 4 12 18 16 14 2 10 8 6
Conway Notation [72]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 12, width is 5,

Braid index is 5

9 2 ML.gif 9 2 AP.gif
[{11, 8}, {7, 9}, {8, 6}, {5, 7}, {6, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 10}, {9, 11}, {10, 1}]

[edit Notes on presentations of 9 2]

Knot 9_2.
A graph, knot 9_2.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,7\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-12][1]
Hyperbolic Volume 3.48666
A-Polynomial See Data:9 2/A-polynomial

[edit Notes for 9 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 1 }[/math]
Rasmussen s-Invariant -2

[edit Notes for 9 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t-7+4 t^{-1} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 15, -2 }
Jones polynomial [math]\displaystyle{ q^{-1} - q^{-2} +2 q^{-3} -2 q^{-4} +2 q^{-5} -2 q^{-6} +2 q^{-7} - q^{-8} + q^{-9} - q^{-10} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -a^{10}+z^2 a^8+a^8+z^2 a^6+z^2 a^4+z^2 a^2+a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-4 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+11 z^4 a^{10}-7 z^2 a^{10}+a^{10}+2 z^7 a^9-10 z^5 a^9+13 z^3 a^9-4 z a^9+z^8 a^8-5 z^6 a^8+8 z^4 a^8-6 z^2 a^8+a^8+z^7 a^7-3 z^5 a^7+z^3 a^7+z^6 a^6-2 z^4 a^6+z^5 a^5-z^3 a^5+z^4 a^4+z^3 a^3+z^2 a^2-a^2 }[/math]
The A2 invariant [math]\displaystyle{ -q^{32}-q^{30}+q^{24}+q^{22}+q^8+q^6+q^2 }[/math]
The G2 invariant [math]\displaystyle{ q^{156}+q^{152}-q^{150}+q^{142}-2 q^{140}+q^{138}-q^{136}-q^{134}-2 q^{130}-q^{128}-q^{126}-q^{124}-q^{118}+q^{112}-q^{108}+q^{106}+q^{104}+2 q^{102}+q^{98}+q^{94}+q^{92}-2 q^{90}+q^{88}+q^{86}+q^{76}-q^{72}+q^{66}-q^{62}-q^{52}+q^{48}+q^{38}+q^{34}+q^{28}+q^{24}+q^{20}+q^{14}+q^{10} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {7_4,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n13,}

Vassiliev invariants

V2 and V3: (4, -10)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -80 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1304}{3} }[/math] [math]\displaystyle{ \frac{184}{3} }[/math] [math]\displaystyle{ -1280 }[/math] [math]\displaystyle{ -\frac{8000}{3} }[/math] [math]\displaystyle{ -\frac{1280}{3} }[/math] [math]\displaystyle{ -400 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 3200 }[/math] [math]\displaystyle{ \frac{20864}{3} }[/math] [math]\displaystyle{ \frac{2944}{3} }[/math] [math]\displaystyle{ \frac{249422}{15} }[/math] [math]\displaystyle{ -\frac{856}{5} }[/math] [math]\displaystyle{ \frac{315368}{45} }[/math] [math]\displaystyle{ \frac{2482}{9} }[/math] [math]\displaystyle{ \frac{13742}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 9 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         11
-3        110
-5       1  1
-7      11  0
-9     11   0
-11    11    0
-13   11     0
-15   1      1
-17 11       0
-19          0
-211         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials