9 3

From Knot Atlas
Jump to navigationJump to search

9 2.gif

9_2

9 4.gif

9_4

9 3.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 3 at Knotilus!


Knot presentations

Planar diagram presentation X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X14,6,15,5 X16,8,17,7 X2,12,3,11 X4,14,5,13 X6,16,7,15
Gauss code 1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3
Dowker-Thistlethwaite code 8 12 14 16 18 2 4 6 10
Conway Notation [63]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

9 3 ML.gif 9 3 AP.gif
[{4, 11}, {3, 5}, {6, 4}, {5, 10}, {2, 6}, {11, 9}, {10, 8}, {9, 7}, {1, 3}, {8, 2}, {7, 1}]

[edit Notes on presentations of 9 3]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-16]
Hyperbolic Volume 4.99486
A-Polynomial See Data:9 3/A-polynomial

[edit Notes for 9 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 3 }[/math]
Topological 4 genus [math]\displaystyle{ 3 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for 9 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-3 t^2+3 t-3+3 t^{-1} -3 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+9 z^4+9 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 19, 6 }
Jones polynomial [math]\displaystyle{ -q^{12}+q^{11}-2 q^{10}+3 q^9-3 q^8+3 q^7-2 q^6+2 q^5-q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +z^6 a^{-8} +5 z^4 a^{-6} +5 z^4 a^{-8} -z^4 a^{-10} +6 z^2 a^{-6} +7 z^2 a^{-8} -4 z^2 a^{-10} + a^{-6} +3 a^{-8} -3 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-8} +z^8 a^{-10} +z^7 a^{-7} +2 z^7 a^{-9} +z^7 a^{-11} +z^6 a^{-6} -5 z^6 a^{-8} -5 z^6 a^{-10} +z^6 a^{-12} -4 z^5 a^{-7} -8 z^5 a^{-9} -3 z^5 a^{-11} +z^5 a^{-13} -5 z^4 a^{-6} +9 z^4 a^{-8} +11 z^4 a^{-10} -2 z^4 a^{-12} +z^4 a^{-14} +3 z^3 a^{-7} +9 z^3 a^{-9} +4 z^3 a^{-11} -z^3 a^{-13} +z^3 a^{-15} +6 z^2 a^{-6} -9 z^2 a^{-8} -11 z^2 a^{-10} +3 z^2 a^{-12} -z^2 a^{-14} -4 z a^{-9} -z a^{-11} +z a^{-13} -2 z a^{-15} - a^{-6} +3 a^{-8} +3 a^{-10} }[/math]
The A2 invariant [math]\displaystyle{ q^{-10} + q^{-14} + q^{-18} + q^{-20} + q^{-22} +2 q^{-24} - q^{-30} - q^{-32} - q^{-34} - q^{-36} }[/math]
The G2 invariant [math]\displaystyle{ q^{-50} + q^{-54} - q^{-56} + q^{-58} +3 q^{-64} -2 q^{-66} +3 q^{-68} - q^{-70} + q^{-72} +2 q^{-74} -3 q^{-76} +3 q^{-78} - q^{-80} + q^{-82} + q^{-84} - q^{-86} +2 q^{-88} + q^{-90} +2 q^{-94} - q^{-96} + q^{-98} +2 q^{-100} -2 q^{-102} +3 q^{-104} - q^{-106} +2 q^{-108} - q^{-112} +2 q^{-114} -2 q^{-116} +3 q^{-118} -2 q^{-120} + q^{-124} -2 q^{-126} + q^{-128} - q^{-130} - q^{-132} + q^{-134} - q^{-136} - q^{-138} - q^{-142} - q^{-146} -2 q^{-148} - q^{-152} - q^{-156} - q^{-160} - q^{-162} - q^{-164} - q^{-166} +2 q^{-168} -2 q^{-170} + q^{-172} + q^{-178} - q^{-180} + q^{-182} - q^{-184} + q^{-186} - q^{-190} + q^{-192} + q^{-196} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (9, 26)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 208 }[/math] [math]\displaystyle{ 648 }[/math] [math]\displaystyle{ 1578 }[/math] [math]\displaystyle{ 246 }[/math] [math]\displaystyle{ 7488 }[/math] [math]\displaystyle{ \frac{39616}{3} }[/math] [math]\displaystyle{ \frac{7072}{3} }[/math] [math]\displaystyle{ 1744 }[/math] [math]\displaystyle{ 7776 }[/math] [math]\displaystyle{ 21632 }[/math] [math]\displaystyle{ 56808 }[/math] [math]\displaystyle{ 8856 }[/math] [math]\displaystyle{ \frac{1125053}{10} }[/math] [math]\displaystyle{ \frac{16214}{5} }[/math] [math]\displaystyle{ \frac{218942}{5} }[/math] [math]\displaystyle{ \frac{1313}{2} }[/math] [math]\displaystyle{ \frac{57373}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of 9 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23          0
21       21 -1
19      1   1
17     22   0
15    11    0
13   12     1
11  11      0
9  1       1
711        0
51         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials