9 4

From Knot Atlas
Jump to navigationJump to search

9 3.gif

9_3

9 5.gif

9_5

9 4.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 4's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 4 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X3,12,4,13 X7,18,8,1 X9,16,10,17 X15,10,16,11 X17,8,18,9 X5,14,6,15 X11,2,12,3 X13,4,14,5
Gauss code -1, 8, -2, 9, -7, 1, -3, 6, -4, 5, -8, 2, -9, 7, -5, 4, -6, 3
Dowker-Thistlethwaite code 6 12 14 18 16 2 4 10 8
Conway Notation [54]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 4 ML.gif 9 4 AP.gif
[{11, 6}, {5, 7}, {6, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 1}]

[edit Notes on presentations of 9 4]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,7\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 5.55652
A-Polynomial See Data:9 4/A-polynomial

[edit Notes for 9 4's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 9 4's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 3 t^2-5 t+5-5 t^{-1} +3 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 3 z^4+7 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 21, -4 }
Jones polynomial [math]\displaystyle{ q^{-2} - q^{-3} +2 q^{-4} -3 q^{-5} +4 q^{-6} -3 q^{-7} +3 q^{-8} -2 q^{-9} + q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-2 a^{10}+z^4 a^8+3 z^2 a^8+2 a^8+z^4 a^6+2 z^2 a^6+z^4 a^4+3 z^2 a^4+a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-4 z^3 a^{13}+3 z a^{13}+z^6 a^{12}-3 z^4 a^{12}+z^2 a^{12}+z^7 a^{11}-3 z^5 a^{11}+2 z^3 a^{11}-z a^{11}+z^8 a^{10}-5 z^6 a^{10}+11 z^4 a^{10}-10 z^2 a^{10}+2 a^{10}+2 z^7 a^9-8 z^5 a^9+12 z^3 a^9-4 z a^9+z^8 a^8-5 z^6 a^8+11 z^4 a^8-7 z^2 a^8+2 a^8+z^7 a^7-3 z^5 a^7+4 z^3 a^7+z^6 a^6-2 z^4 a^6+z^2 a^6+z^5 a^5-2 z^3 a^5+z^4 a^4-3 z^2 a^4+a^4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{34}-q^{32}-q^{30}-q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{16}+q^{10}+q^6 }[/math]
The G2 invariant [math]\displaystyle{ q^{176}+q^{172}-q^{170}+q^{168}-q^{164}+2 q^{162}-2 q^{160}+2 q^{158}-2 q^{156}+q^{152}-2 q^{150}+3 q^{148}-5 q^{146}+2 q^{144}-q^{142}-3 q^{140}+2 q^{138}-5 q^{136}+q^{134}+q^{132}-3 q^{130}-3 q^{126}-q^{124}+3 q^{122}-5 q^{120}+2 q^{118}-q^{116}-q^{114}+5 q^{112}-3 q^{110}+4 q^{108}-q^{106}+3 q^{104}+2 q^{102}-3 q^{100}+6 q^{98}-3 q^{96}+4 q^{94}+q^{92}-2 q^{90}+3 q^{88}-q^{86}+q^{82}-3 q^{80}+q^{78}-2 q^{74}+4 q^{72}-3 q^{70}+2 q^{68}-q^{64}+q^{62}-2 q^{60}+3 q^{58}-q^{56}+q^{54}+2 q^{48}-q^{46}+2 q^{44}-q^{42}+q^{40}+q^{38}-q^{36}+q^{34}+q^{30} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (7, -19)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 28 }[/math] [math]\displaystyle{ -152 }[/math] [math]\displaystyle{ 392 }[/math] [math]\displaystyle{ \frac{3122}{3} }[/math] [math]\displaystyle{ \frac{502}{3} }[/math] [math]\displaystyle{ -4256 }[/math] [math]\displaystyle{ -\frac{23696}{3} }[/math] [math]\displaystyle{ -\frac{4160}{3} }[/math] [math]\displaystyle{ -1144 }[/math] [math]\displaystyle{ \frac{10976}{3} }[/math] [math]\displaystyle{ 11552 }[/math] [math]\displaystyle{ \frac{87416}{3} }[/math] [math]\displaystyle{ \frac{14056}{3} }[/math] [math]\displaystyle{ \frac{1820137}{30} }[/math] [math]\displaystyle{ \frac{7526}{15} }[/math] [math]\displaystyle{ \frac{1136714}{45} }[/math] [math]\displaystyle{ \frac{9335}{18} }[/math] [math]\displaystyle{ \frac{101737}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 9 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        110
-7       1  1
-9      21  -1
-11     21   1
-13    12    1
-15   22     0
-17   1      1
-19 12       -1
-21          0
-231         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials