9 5
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X6271 X14,6,15,5 X18,8,1,7 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2,14,3,13 X12,4,13,3 X4,12,5,11 |
| Gauss code | 1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3 |
| Dowker-Thistlethwaite code | 6 12 14 18 16 4 2 10 8 |
| Conway Notation | [513] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{3, 5}, {6, 4}, {5, 7}, {8, 6}, {7, 9}, {2, 8}, {10, 3}, {9, 11}, {1, 10}, {11, 2}, {4, 1}] |
[edit Notes on presentations of 9 5]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 5"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,6,15,5 X18,8,1,7 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2,14,3,13 X12,4,13,3 X4,12,5,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 12 14 18 16 4 2 10 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[513] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,2,-1,2,2,3,-2,3,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 5}, {6, 4}, {5, 7}, {8, 6}, {7, 9}, {2, 8}, {10, 3}, {9, 11}, {1, 10}, {11, 2}, {4, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 t-11+6 t^{-1} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 23, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^9-2 q^8+3 q^7-3 q^6+4 q^5-3 q^4+3 q^3-2 q^2+q} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^{-2} +2 z^2 a^{-4} +2 z^2 a^{-6} +z^2 a^{-8} + a^{-4} + a^{-6} - a^{-10} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -2 z^6 a^{-8} -5 z^6 a^{-10} +3 z^5 a^{-5} -5 z^5 a^{-7} -14 z^5 a^{-9} -6 z^5 a^{-11} +3 z^4 a^{-4} -7 z^4 a^{-6} -3 z^4 a^{-8} +7 z^4 a^{-10} +2 z^3 a^{-3} -4 z^3 a^{-5} +z^3 a^{-7} +18 z^3 a^{-9} +11 z^3 a^{-11} +z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +4 z^2 a^{-8} -3 z^2 a^{-10} -6 z a^{-9} -6 z a^{-11} + a^{-4} - a^{-6} + a^{-10} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} + q^{-8} + q^{-12} + q^{-14} + q^{-16} + q^{-18} + q^{-22} - q^{-26} - q^{-30} - q^{-32} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} - q^{-12} + q^{-14} - q^{-16} - q^{-22} +3 q^{-24} -2 q^{-26} +2 q^{-28} - q^{-30} + q^{-34} - q^{-36} +3 q^{-38} -2 q^{-40} + q^{-42} +2 q^{-48} - q^{-50} + q^{-52} - q^{-54} + q^{-56} - q^{-60} + q^{-62} + q^{-66} + q^{-72} + q^{-74} +2 q^{-78} -2 q^{-80} +5 q^{-82} - q^{-84} - q^{-86} +5 q^{-88} -4 q^{-90} +6 q^{-92} -2 q^{-94} - q^{-96} +3 q^{-98} -2 q^{-100} +4 q^{-102} -3 q^{-104} - q^{-110} + q^{-112} -2 q^{-114} - q^{-116} + q^{-118} -3 q^{-120} -2 q^{-124} -2 q^{-126} +3 q^{-128} -6 q^{-130} +3 q^{-132} -2 q^{-134} -2 q^{-136} +4 q^{-138} -5 q^{-140} +3 q^{-142} - q^{-144} + q^{-148} -2 q^{-150} +2 q^{-152} + q^{-156} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} - q^{-3} + q^{-5} + q^{-9} + q^{-11} + q^{-15} - q^{-17} - q^{-21} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +2 q^{-8} - q^{-10} + q^{-12} + q^{-14} - q^{-16} + q^{-18} + q^{-20} +2 q^{-26} - q^{-30} + q^{-34} - q^{-36} - q^{-38} + q^{-40} - q^{-42} -2 q^{-44} + q^{-46} -2 q^{-50} + q^{-52} + q^{-54} - q^{-56} + q^{-60} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-5} + q^{-9} + q^{-11} - q^{-15} + q^{-17} + q^{-19} + q^{-21} - q^{-25} + q^{-27} +2 q^{-29} + q^{-31} -3 q^{-33} +2 q^{-37} +2 q^{-39} - q^{-43} - q^{-45} + q^{-47} +3 q^{-49} + q^{-51} -3 q^{-53} -2 q^{-55} +2 q^{-57} - q^{-59} -3 q^{-61} -2 q^{-63} + q^{-65} - q^{-71} + q^{-73} + q^{-75} -2 q^{-79} - q^{-81} + q^{-83} +2 q^{-85} - q^{-87} -2 q^{-89} +3 q^{-93} +2 q^{-95} -2 q^{-97} -2 q^{-99} + q^{-101} +3 q^{-103} -2 q^{-107} - q^{-109} + q^{-111} + q^{-113} - q^{-117} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-6} + q^{-10} +2 q^{-14} -2 q^{-16} + q^{-20} + q^{-22} +4 q^{-24} -4 q^{-26} -2 q^{-28} + q^{-30} +4 q^{-32} +5 q^{-34} -5 q^{-36} -5 q^{-38} +7 q^{-42} +8 q^{-44} -4 q^{-46} -8 q^{-48} -3 q^{-50} +6 q^{-52} +10 q^{-54} -7 q^{-58} -8 q^{-60} - q^{-62} +7 q^{-64} +4 q^{-66} +2 q^{-68} -3 q^{-70} -6 q^{-72} - q^{-74} +4 q^{-76} +6 q^{-78} +2 q^{-80} -6 q^{-82} -6 q^{-84} - q^{-86} +4 q^{-88} +3 q^{-90} -4 q^{-92} -6 q^{-94} +3 q^{-98} + q^{-100} -4 q^{-102} -5 q^{-104} +2 q^{-106} +5 q^{-108} +3 q^{-110} -3 q^{-112} -5 q^{-114} +2 q^{-116} +5 q^{-118} +5 q^{-120} + q^{-122} -5 q^{-124} -2 q^{-126} - q^{-128} +3 q^{-130} +4 q^{-132} -2 q^{-134} -2 q^{-136} -4 q^{-138} - q^{-140} +5 q^{-142} +3 q^{-144} +3 q^{-146} -3 q^{-148} -5 q^{-150} - q^{-152} + q^{-154} +6 q^{-156} +2 q^{-158} -3 q^{-160} -4 q^{-162} -4 q^{-164} +3 q^{-166} +4 q^{-168} +2 q^{-170} - q^{-172} -5 q^{-174} - q^{-176} + q^{-178} +2 q^{-180} +2 q^{-182} - q^{-184} - q^{-186} - q^{-188} + q^{-192} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-5} - q^{-7} + q^{-11} + q^{-15} - q^{-19} +2 q^{-23} +2 q^{-25} -2 q^{-29} -3 q^{-31} + q^{-33} +5 q^{-35} +6 q^{-37} -2 q^{-39} -7 q^{-41} -5 q^{-43} +3 q^{-45} +11 q^{-47} +8 q^{-49} -4 q^{-51} -13 q^{-53} -7 q^{-55} +7 q^{-57} +14 q^{-59} +8 q^{-61} -7 q^{-63} -17 q^{-65} -11 q^{-67} +8 q^{-69} +21 q^{-71} +13 q^{-73} -4 q^{-75} -17 q^{-77} -18 q^{-79} - q^{-81} +17 q^{-83} +17 q^{-85} +5 q^{-87} -8 q^{-89} -17 q^{-91} -12 q^{-93} - q^{-95} +10 q^{-97} +14 q^{-99} +8 q^{-101} -2 q^{-103} -13 q^{-105} -15 q^{-107} -6 q^{-109} +8 q^{-111} +15 q^{-113} +10 q^{-115} -3 q^{-117} -13 q^{-119} -11 q^{-121} + q^{-123} +8 q^{-125} +7 q^{-127} -2 q^{-129} -8 q^{-131} -5 q^{-133} +2 q^{-135} +5 q^{-137} +4 q^{-139} -6 q^{-141} -10 q^{-143} -3 q^{-145} +7 q^{-147} +12 q^{-149} +8 q^{-151} -6 q^{-153} -14 q^{-155} -8 q^{-157} +5 q^{-159} +15 q^{-161} +14 q^{-163} + q^{-165} -13 q^{-167} -14 q^{-169} -3 q^{-171} +10 q^{-173} +17 q^{-175} +8 q^{-177} -6 q^{-179} -14 q^{-181} -12 q^{-183} + q^{-185} +10 q^{-187} +11 q^{-189} +4 q^{-191} -5 q^{-193} -11 q^{-195} -10 q^{-197} - q^{-199} +6 q^{-201} +8 q^{-203} +7 q^{-205} + q^{-207} -6 q^{-209} -8 q^{-211} -4 q^{-213} +6 q^{-217} +8 q^{-219} +5 q^{-221} -2 q^{-223} -7 q^{-225} -8 q^{-227} -5 q^{-229} +2 q^{-231} +8 q^{-233} +8 q^{-235} +3 q^{-237} -4 q^{-239} -8 q^{-241} -7 q^{-243} - q^{-245} +5 q^{-247} +8 q^{-249} +5 q^{-251} - q^{-253} -5 q^{-255} -6 q^{-257} -3 q^{-259} +2 q^{-261} +5 q^{-263} +3 q^{-265} + q^{-267} - q^{-269} -3 q^{-271} -2 q^{-273} + q^{-277} + q^{-279} + q^{-281} - q^{-285} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} + q^{-8} + q^{-12} + q^{-14} + q^{-16} + q^{-18} + q^{-22} - q^{-26} - q^{-30} - q^{-32} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} -2 q^{-6} +2 q^{-8} -2 q^{-10} +5 q^{-12} -4 q^{-14} +4 q^{-16} -2 q^{-18} +5 q^{-20} -4 q^{-22} +4 q^{-24} +6 q^{-28} +4 q^{-32} +2 q^{-34} + q^{-36} +2 q^{-38} -4 q^{-40} +2 q^{-42} -11 q^{-44} +10 q^{-46} -16 q^{-48} +12 q^{-50} -16 q^{-52} +14 q^{-54} -10 q^{-56} +8 q^{-58} -3 q^{-60} +2 q^{-62} +4 q^{-64} -8 q^{-66} +7 q^{-68} -12 q^{-70} +10 q^{-72} -10 q^{-74} +6 q^{-76} -4 q^{-78} +4 q^{-80} + q^{-84} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-6} - q^{-8} +2 q^{-10} + q^{-12} - q^{-14} +2 q^{-18} + q^{-20} -2 q^{-22} +3 q^{-26} +2 q^{-28} + q^{-30} +2 q^{-32} + q^{-34} +2 q^{-36} + q^{-38} - q^{-42} + q^{-46} -2 q^{-50} - q^{-52} - q^{-56} -3 q^{-58} -2 q^{-60} -2 q^{-66} - q^{-68} + q^{-70} + q^{-72} - q^{-76} + q^{-78} + q^{-80} + q^{-82} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-6} - q^{-8} +2 q^{-10} - q^{-14} +2 q^{-16} + q^{-18} +2 q^{-22} +2 q^{-24} + q^{-28} + q^{-30} + q^{-32} +2 q^{-36} +3 q^{-38} + q^{-40} + q^{-44} -3 q^{-46} -3 q^{-48} -3 q^{-50} -4 q^{-52} -2 q^{-54} + q^{-60} +2 q^{-62} + q^{-66} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-5} + q^{-11} + q^{-15} + q^{-17} + q^{-19} + q^{-21} + q^{-23} + q^{-25} + q^{-29} - q^{-35} - q^{-39} - q^{-41} - q^{-43} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-6} + q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14} +2 q^{-16} - q^{-18} +2 q^{-20} +2 q^{-26} - q^{-28} +3 q^{-30} -3 q^{-32} +4 q^{-34} -4 q^{-36} +3 q^{-38} -3 q^{-40} +2 q^{-42} - q^{-44} + q^{-46} + q^{-48} - q^{-50} +2 q^{-52} -2 q^{-54} +2 q^{-56} -2 q^{-58} + q^{-60} -2 q^{-62} - q^{-66} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-10} - q^{-12} +2 q^{-16} + q^{-18} - q^{-20} - q^{-22} +2 q^{-26} + q^{-28} - q^{-32} + q^{-34} +2 q^{-36} + q^{-38} - q^{-40} + q^{-44} +2 q^{-46} - q^{-50} +2 q^{-54} + q^{-56} + q^{-60} +2 q^{-62} + q^{-64} - q^{-66} - q^{-68} + q^{-70} + q^{-72} - q^{-74} -4 q^{-76} -2 q^{-78} -2 q^{-84} -3 q^{-86} - q^{-88} + q^{-90} + q^{-92} - q^{-94} - q^{-96} + q^{-98} +2 q^{-100} + q^{-108} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} - q^{-12} + q^{-14} - q^{-16} - q^{-22} +3 q^{-24} -2 q^{-26} +2 q^{-28} - q^{-30} + q^{-34} - q^{-36} +3 q^{-38} -2 q^{-40} + q^{-42} +2 q^{-48} - q^{-50} + q^{-52} - q^{-54} + q^{-56} - q^{-60} + q^{-62} + q^{-66} + q^{-72} + q^{-74} +2 q^{-78} -2 q^{-80} +5 q^{-82} - q^{-84} - q^{-86} +5 q^{-88} -4 q^{-90} +6 q^{-92} -2 q^{-94} - q^{-96} +3 q^{-98} -2 q^{-100} +4 q^{-102} -3 q^{-104} - q^{-110} + q^{-112} -2 q^{-114} - q^{-116} + q^{-118} -3 q^{-120} -2 q^{-124} -2 q^{-126} +3 q^{-128} -6 q^{-130} +3 q^{-132} -2 q^{-134} -2 q^{-136} +4 q^{-138} -5 q^{-140} +3 q^{-142} - q^{-144} + q^{-148} -2 q^{-150} +2 q^{-152} + q^{-156} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 5"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 t-11+6 t^{-1} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^9-2 q^8+3 q^7-3 q^6+4 q^5-3 q^4+3 q^3-2 q^2+q} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^{-2} +2 z^2 a^{-4} +2 z^2 a^{-6} +z^2 a^{-8} + a^{-4} + a^{-6} - a^{-10} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -2 z^6 a^{-8} -5 z^6 a^{-10} +3 z^5 a^{-5} -5 z^5 a^{-7} -14 z^5 a^{-9} -6 z^5 a^{-11} +3 z^4 a^{-4} -7 z^4 a^{-6} -3 z^4 a^{-8} +7 z^4 a^{-10} +2 z^3 a^{-3} -4 z^3 a^{-5} +z^3 a^{-7} +18 z^3 a^{-9} +11 z^3 a^{-11} +z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +4 z^2 a^{-8} -3 z^2 a^{-10} -6 z a^{-9} -6 z a^{-11} + a^{-4} - a^{-6} + a^{-10} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 5"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 t-11+6 t^{-1} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^9-2 q^8+3 q^7-3 q^6+4 q^5-3 q^4+3 q^3-2 q^2+q} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (6, 15) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 9 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{29}-q^{28}-q^{27}+3 q^{26}-q^{25}-4 q^{24}+5 q^{23}-7 q^{21}+6 q^{20}+2 q^{19}-9 q^{18}+6 q^{17}+4 q^{16}-10 q^{15}+5 q^{14}+5 q^{13}-8 q^{12}+3 q^{11}+5 q^{10}-7 q^9+3 q^8+3 q^7-5 q^6+3 q^5+q^4-2 q^3+q^2} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{57}+q^{56}+q^{55}-3 q^{53}+3 q^{51}+3 q^{50}-5 q^{49}-3 q^{48}+3 q^{47}+7 q^{46}-4 q^{45}-6 q^{44}+q^{43}+8 q^{42}-q^{41}-7 q^{40}-q^{39}+7 q^{38}+q^{37}-6 q^{36}-q^{35}+5 q^{34}+2 q^{33}-6 q^{32}+2 q^{30}+q^{29}-4 q^{28}+3 q^{27}-2 q^{26}+5 q^{23}-4 q^{22}-2 q^{21}+6 q^{19}-2 q^{18}-2 q^{17}-2 q^{16}+3 q^{15}+2 q^{14}-q^{13}-3 q^{12}+q^{11}+3 q^{10}-3 q^8+q^7+q^6+q^5-2 q^4+q^3} |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{94}-q^{93}-q^{92}+4 q^{89}-q^{88}-2 q^{87}-2 q^{86}-4 q^{85}+8 q^{84}+2 q^{83}-3 q^{81}-11 q^{80}+8 q^{79}+3 q^{78}+5 q^{77}+q^{76}-16 q^{75}+6 q^{74}-q^{73}+7 q^{72}+7 q^{71}-16 q^{70}+8 q^{69}-7 q^{68}+4 q^{67}+9 q^{66}-16 q^{65}+14 q^{64}-8 q^{63}+8 q^{61}-19 q^{60}+20 q^{59}-4 q^{58}+5 q^{56}-26 q^{55}+22 q^{54}+2 q^{53}+2 q^{52}+2 q^{51}-33 q^{50}+23 q^{49}+7 q^{48}+4 q^{47}-q^{46}-39 q^{45}+25 q^{44}+14 q^{43}+5 q^{42}-6 q^{41}-44 q^{40}+25 q^{39}+22 q^{38}+9 q^{37}-8 q^{36}-49 q^{35}+20 q^{34}+25 q^{33}+14 q^{32}-6 q^{31}-46 q^{30}+12 q^{29}+18 q^{28}+15 q^{27}+q^{26}-36 q^{25}+8 q^{24}+9 q^{23}+10 q^{22}+5 q^{21}-24 q^{20}+7 q^{19}+2 q^{18}+5 q^{17}+5 q^{16}-14 q^{15}+6 q^{14}-q^{13}+2 q^{12}+3 q^{11}-6 q^{10}+3 q^9-q^8+q^7+q^6-2 q^5+q^4} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|






