9 14: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=14|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,9,-7,8,-6,3,-4,2,-5,6,-8,7,-9,5/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=14|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,9,-7,8,-6,3,-4,2,-5,6,-8,7,-9,5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 135: Line 127:
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:15, 28 August 2005

9 13.gif

9_13

9 15.gif

9_15

9 14.gif Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 14's page at Knotilus!

Visit 9 14's page at the original Knot Atlas!

9 14 Quick Notes


9 14 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6
Gauss code -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5
Dowker-Thistlethwaite code 4 10 12 16 14 2 18 8 6
Conway Notation [41112]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-7]
Hyperbolic Volume 8.95499
A-Polynomial See Data:9 14/A-polynomial

[edit Notes for 9 14's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 14's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 37, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123456χ
13         11
11        1 -1
9       21 1
7      31  -2
5     32   1
3    33    0
1   33     0
-1  24      2
-3 12       -1
-5 2        2
-71         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 14]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 14]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8], 

X[17, 7, 18, 6]]
In[4]:=
GaussCode[Knot[9, 14]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5]
In[5]:=
BR[Knot[9, 14]]
Out[5]=  
BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 14]][t]
Out[6]=  
     2    9            2

15 + -- - - - 9 t + 2 t

     2   t
t
In[7]:=
Conway[Knot[9, 14]][z]
Out[7]=  
     2      4
1 - z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 14]}
In[9]:=
{KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]}
Out[9]=  
{37, 0}
In[10]:=
J=Jones[Knot[9, 14]][q]
Out[10]=  
     -3   3    4            2      3      4      5    6

6 - q + -- - - - 6 q + 6 q - 5 q + 3 q - 2 q + q

          2   q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 14], Knot[11, NonAlternating, 53]}
In[12]:=
A2Invariant[Knot[9, 14]][q]
Out[12]=  
  -10    -8    -6    -4   2     2    4    8      10    12    16    18

-q + q + q - q + -- + q + q + q - 2 q - q - q + q +

                          2
                         q

  20
q
In[13]:=
Kauffman[Knot[9, 14]][a, z]
Out[13]=  
                                          2       2      2
    -6   2     -2   3 z   5 z   2 z   4 z    10 z    8 z       2  2

1 - a - -- - a - --- - --- - --- + ---- + ----- + ---- - 2 a z +

          4          5     3     a      6      4       2
         a          a     a            a      a       a

    3       3      3                              4      4       4
 9 z    15 z    2 z         3    3  3      4   4 z    9 z    12 z
 ---- + ----- + ---- - 3 a z  + a  z  - 4 z  - ---- - ---- - ----- + 
   5      3      a                               6      4      2
  a      a                                      a      a      a

              5       5      5                    6      6      7
    2  4   8 z    16 z    4 z         5      6   z    3 z    2 z
 3 a  z  - ---- - ----- - ---- + 4 a z  + 4 z  + -- + ---- + ---- + 
             5      3      a                      6     2      5
            a      a                             a     a      a

    7      7    8    8
 5 z    3 z    z    z
 ---- + ---- + -- + --
   3     a      4    2
a a a
In[14]:=
{Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 14]][q, t]
Out[15]=  
4           1       2       1      2      2               3

- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 3 q t + q 7 3 5 2 3 2 3 q t

         q  t    q  t    q  t    q  t

    3  2      5  2      5  3      7  3    7  4      9  4    9  5
 3 q  t  + 3 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + q  t  + 

  11  5    13  6
q t + q t