10 29: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
| Line 48: | Line 41: | ||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 142: | Line 134: | ||
q t + q t</nowiki></pre></td></tr> |
q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 20:11, 28 August 2005
|
|
|
|
Visit 10 29's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 29's page at Knotilus! Visit 10 29's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,17 X7,18,8,19 X13,1,14,20 X17,6,18,7 X19,15,20,14 X15,8,16,9 |
| Gauss code | -1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8, 6, -9, 7 |
| Dowker-Thistlethwaite code | 4 10 16 18 12 2 20 8 6 14 |
| Conway Notation | [31222] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+15 t-17+15 t^{-1} -7 t^{-2} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-4 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 63, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-2 q^2+5 q-7+9 q^{-1} -11 q^{-2} +10 q^{-3} -8 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-a^4+z^6 a^2+3 z^4 a^2+3 z^2 a^2+a^2-2 z^4-5 z^2-2+z^2 a^{-2} +2 a^{-2} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+3 a^4 z^8+5 a^2 z^8+2 z^8+5 a^5 z^7+5 a^3 z^7+2 a z^7+2 z^7 a^{-1} +5 a^6 z^6-9 a^2 z^6+z^6 a^{-2} -3 z^6+3 a^7 z^5-7 a^5 z^5-12 a^3 z^5-8 a z^5-6 z^5 a^{-1} +a^8 z^4-7 a^6 z^4-5 a^4 z^4+3 a^2 z^4-4 z^4 a^{-2} -4 z^4-3 a^7 z^3+6 a^5 z^3+7 a^3 z^3+2 a z^3+4 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+4 a^4 z^2+5 z^2 a^{-2} +6 z^2-2 a^5 z+2 a z-a^6-a^4-a^2-2 a^{-2} -2} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{18}+2 q^{16}-q^{14}+q^{12}+q^{10}-2 q^8+q^6-3 q^4+q^2- q^{-2} +2 q^{-4} + q^{-8} + q^{-10} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-3 q^{104}-2 q^{102}+12 q^{100}-20 q^{98}+28 q^{96}-29 q^{94}+16 q^{92}+q^{90}-25 q^{88}+50 q^{86}-63 q^{84}+64 q^{82}-42 q^{80}+5 q^{78}+38 q^{76}-70 q^{74}+85 q^{72}-76 q^{70}+41 q^{68}+4 q^{66}-46 q^{64}+69 q^{62}-55 q^{60}+21 q^{58}+25 q^{56}-55 q^{54}+52 q^{52}-24 q^{50}-32 q^{48}+83 q^{46}-109 q^{44}+97 q^{42}-42 q^{40}-34 q^{38}+103 q^{36}-137 q^{34}+128 q^{32}-82 q^{30}+9 q^{28}+56 q^{26}-94 q^{24}+105 q^{22}-71 q^{20}+17 q^{18}+34 q^{16}-62 q^{14}+53 q^{12}-22 q^{10}-28 q^8+64 q^6-75 q^4+52 q^2-5-52 q^{-2} +93 q^{-4} -99 q^{-6} +70 q^{-8} -25 q^{-10} -28 q^{-12} +64 q^{-14} -74 q^{-16} +66 q^{-18} -35 q^{-20} +6 q^{-22} +19 q^{-24} -30 q^{-26} +30 q^{-28} -21 q^{-30} +12 q^{-32} - q^{-34} -4 q^{-36} +6 q^{-38} -5 q^{-40} +4 q^{-42} - q^{-44} + q^{-46} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{13}+3 q^{11}-2 q^9+2 q^7-q^5-2 q^3+2 q-2 q^{-1} +3 q^{-3} - q^{-5} + q^{-7} } |
| 2 | |
| 3 | |
| 4 | |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{195}-2 q^{193}+3 q^{189}-2 q^{187}-q^{185}+q^{183}-2 q^{181}+6 q^{177}-6 q^{173}+q^{171}+q^{169}+q^{167}-4 q^{163}-11 q^{161}-q^{159}+30 q^{157}+34 q^{155}-q^{153}-61 q^{151}-92 q^{149}-36 q^{147}+110 q^{145}+218 q^{143}+123 q^{141}-159 q^{139}-397 q^{137}-311 q^{135}+140 q^{133}+635 q^{131}+650 q^{129}-24 q^{127}-879 q^{125}-1091 q^{123}-284 q^{121}+1018 q^{119}+1635 q^{117}+779 q^{115}-995 q^{113}-2119 q^{111}-1417 q^{109}+706 q^{107}+2428 q^{105}+2102 q^{103}-177 q^{101}-2458 q^{99}-2646 q^{97}-501 q^{95}+2128 q^{93}+2928 q^{91}+1203 q^{89}-1532 q^{87}-2868 q^{85}-1741 q^{83}+758 q^{81}+2478 q^{79}+2045 q^{77}+6 q^{75}-1848 q^{73}-2075 q^{71}-666 q^{69}+1146 q^{67}+1895 q^{65}+1110 q^{63}-450 q^{61}-1588 q^{59}-1427 q^{57}-91 q^{55}+1289 q^{53}+1588 q^{51}+518 q^{49}-1036 q^{47}-1728 q^{45}-845 q^{43}+888 q^{41}+1871 q^{39}+1111 q^{37}-771 q^{35}-2032 q^{33}-1425 q^{31}+627 q^{29}+2220 q^{27}+1755 q^{25}-405 q^{23}-2289 q^{21}-2148 q^{19}+16 q^{17}+2261 q^{15}+2492 q^{13}+485 q^{11}-1964 q^9-2717 q^7-1094 q^5+1466 q^3+2719 q+1651 q^{-1} -750 q^{-3} -2444 q^{-5} -2049 q^{-7} -29 q^{-9} +1883 q^{-11} +2177 q^{-13} +742 q^{-15} -1153 q^{-17} -1994 q^{-19} -1223 q^{-21} +380 q^{-23} +1533 q^{-25} +1421 q^{-27} +263 q^{-29} -948 q^{-31} -1307 q^{-33} -658 q^{-35} +363 q^{-37} +975 q^{-39} +806 q^{-41} +74 q^{-43} -586 q^{-45} -708 q^{-47} -307 q^{-49} +220 q^{-51} +502 q^{-53} +374 q^{-55} - q^{-57} -277 q^{-59} -297 q^{-61} -111 q^{-63} +106 q^{-65} +193 q^{-67} +120 q^{-69} -12 q^{-71} -95 q^{-73} -90 q^{-75} -20 q^{-77} +35 q^{-79} +46 q^{-81} +27 q^{-83} -8 q^{-85} -24 q^{-87} -13 q^{-89} +2 q^{-91} +4 q^{-93} +7 q^{-95} +3 q^{-97} -5 q^{-99} -2 q^{-101} +2 q^{-103} + q^{-109} - q^{-111} - q^{-113} + q^{-115} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{18}+2 q^{16}-q^{14}+q^{12}+q^{10}-2 q^8+q^6-3 q^4+q^2- q^{-2} +2 q^{-4} + q^{-8} + q^{-10} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-4 q^{58}+10 q^{56}-20 q^{54}+38 q^{52}-64 q^{50}+100 q^{48}-142 q^{46}+189 q^{44}-242 q^{42}+290 q^{40}-320 q^{38}+334 q^{36}-322 q^{34}+274 q^{32}-186 q^{30}+56 q^{28}+94 q^{26}-264 q^{24}+430 q^{22}-575 q^{20}+680 q^{18}-726 q^{16}+718 q^{14}-644 q^{12}+534 q^{10}-378 q^8+204 q^6-28 q^4-128 q^2+250-338 q^{-2} +378 q^{-4} -376 q^{-6} +336 q^{-8} -282 q^{-10} +217 q^{-12} -154 q^{-14} +102 q^{-16} -60 q^{-18} +35 q^{-20} -16 q^{-22} +8 q^{-24} -2 q^{-26} + q^{-28} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{52}+2 q^{48}+q^{46}-4 q^{44}+5 q^{40}-3 q^{38}-5 q^{36}+4 q^{34}+8 q^{32}-6 q^{30}-8 q^{28}+6 q^{26}+3 q^{24}-9 q^{22}-q^{20}+8 q^{18}-2 q^{16}-q^{14}+6 q^{12}+3 q^{10}-5 q^8+3 q^6+8 q^4-5 q^2-6+6 q^{-2} +2 q^{-4} -9 q^{-6} -3 q^{-8} +5 q^{-10} +2 q^{-12} -5 q^{-14} - q^{-16} +4 q^{-18} +2 q^{-20} - q^{-22} + q^{-26} + q^{-28} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+5 q^{42}-6 q^{40}-q^{38}+12 q^{36}-10 q^{34}-5 q^{32}+16 q^{30}-8 q^{28}-8 q^{26}+14 q^{24}-4 q^{22}-8 q^{20}+4 q^{18}+3 q^{16}-q^{14}-5 q^{12}+11 q^{10}+5 q^8-14 q^6+6 q^4+6 q^2-17+3 q^{-2} +7 q^{-4} -10 q^{-6} +5 q^{-8} +5 q^{-10} -3 q^{-12} +3 q^{-14} +2 q^{-16} - q^{-18} + q^{-20} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{29}+q^{25}-q^{23}+2 q^{21}-2 q^{19}+2 q^{17}-q^{15}+q^{13}-q^{11}-2 q^5+q^3-2 q+ q^{-1} -2 q^{-3} +2 q^{-5} +2 q^{-9} + q^{-11} + q^{-13} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+4 q^{44}-7 q^{42}+10 q^{40}-13 q^{38}+16 q^{36}-16 q^{34}+17 q^{32}-14 q^{30}+10 q^{28}-2 q^{26}-6 q^{24}+14 q^{22}-22 q^{20}+28 q^{18}-33 q^{16}+33 q^{14}-31 q^{12}+25 q^{10}-19 q^8+10 q^6-2 q^4-6 q^2+11-15 q^{-2} +17 q^{-4} -16 q^{-6} +15 q^{-8} -11 q^{-10} +9 q^{-12} -5 q^{-14} +4 q^{-16} - q^{-18} + q^{-20} } |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-3 q^{104}-2 q^{102}+12 q^{100}-20 q^{98}+28 q^{96}-29 q^{94}+16 q^{92}+q^{90}-25 q^{88}+50 q^{86}-63 q^{84}+64 q^{82}-42 q^{80}+5 q^{78}+38 q^{76}-70 q^{74}+85 q^{72}-76 q^{70}+41 q^{68}+4 q^{66}-46 q^{64}+69 q^{62}-55 q^{60}+21 q^{58}+25 q^{56}-55 q^{54}+52 q^{52}-24 q^{50}-32 q^{48}+83 q^{46}-109 q^{44}+97 q^{42}-42 q^{40}-34 q^{38}+103 q^{36}-137 q^{34}+128 q^{32}-82 q^{30}+9 q^{28}+56 q^{26}-94 q^{24}+105 q^{22}-71 q^{20}+17 q^{18}+34 q^{16}-62 q^{14}+53 q^{12}-22 q^{10}-28 q^8+64 q^6-75 q^4+52 q^2-5-52 q^{-2} +93 q^{-4} -99 q^{-6} +70 q^{-8} -25 q^{-10} -28 q^{-12} +64 q^{-14} -74 q^{-16} +66 q^{-18} -35 q^{-20} +6 q^{-22} +19 q^{-24} -30 q^{-26} +30 q^{-28} -21 q^{-30} +12 q^{-32} - q^{-34} -4 q^{-36} +6 q^{-38} -5 q^{-40} +4 q^{-42} - q^{-44} + q^{-46} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 29"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+15 t-17+15 t^{-1} -7 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-2 q^2+5 q-7+9 q^{-1} -11 q^{-2} +10 q^{-3} -8 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-a^4+z^6 a^2+3 z^4 a^2+3 z^2 a^2+a^2-2 z^4-5 z^2-2+z^2 a^{-2} +2 a^{-2} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+3 a^4 z^8+5 a^2 z^8+2 z^8+5 a^5 z^7+5 a^3 z^7+2 a z^7+2 z^7 a^{-1} +5 a^6 z^6-9 a^2 z^6+z^6 a^{-2} -3 z^6+3 a^7 z^5-7 a^5 z^5-12 a^3 z^5-8 a z^5-6 z^5 a^{-1} +a^8 z^4-7 a^6 z^4-5 a^4 z^4+3 a^2 z^4-4 z^4 a^{-2} -4 z^4-3 a^7 z^3+6 a^5 z^3+7 a^3 z^3+2 a z^3+4 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+4 a^4 z^2+5 z^2 a^{-2} +6 z^2-2 a^5 z+2 a z-a^6-a^4-a^2-2 a^{-2} -2} |
Vassiliev invariants
| V2 and V3: | (-4, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 29. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 29]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 29]] |
Out[3]= | PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],X[5, 16, 6, 17], X[7, 18, 8, 19], X[13, 1, 14, 20], X[17, 6, 18, 7],X[19, 15, 20, 14], X[15, 8, 16, 9]] |
In[4]:= | GaussCode[Knot[10, 29]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -5, 8, -6, 10, -2, 3, -4, 2, -7, 9, -10, 5, -8, 6, -9, 7] |
In[5]:= | BR[Knot[10, 29]] |
Out[5]= | BR[5, {-1, -1, -1, 2, -1, -3, 2, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[10, 29]][t] |
Out[6]= | -3 7 15 2 3 |
In[7]:= | Conway[Knot[10, 29]][z] |
Out[7]= | 2 4 6 1 - 4 z - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 29]} |
In[9]:= | {KnotDet[Knot[10, 29]], KnotSignature[Knot[10, 29]]} |
Out[9]= | {63, -2} |
In[10]:= | J=Jones[Knot[10, 29]][q] |
Out[10]= | -7 3 6 8 10 11 9 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 29]} |
In[12]:= | A2Invariant[Knot[10, 29]][q] |
Out[12]= | -22 -18 2 -14 -12 -10 2 -6 3 -2 2 |
In[13]:= | Kauffman[Knot[10, 29]][a, z] |
Out[13]= | 22 2 4 6 5 2 5 z 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 29]], Vassiliev[3][Knot[10, 29]]} |
Out[14]= | {0, 3} |
In[15]:= | Kh[Knot[10, 29]][q, t] |
Out[15]= | 4 6 1 2 1 4 2 4 4 |


