8 17: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 8, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n53]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 70: | ||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{12}-3 q^{11}+q^{10}+9 q^9-14 q^8-3 q^7+28 q^6-25 q^5-14 q^4+47 q^3-29 q^2-25 q+55-25 q^{-1} -29 q^{-2} +47 q^{-3} -14 q^{-4} -25 q^{-5} +28 q^{-6} -3 q^{-7} -14 q^{-8} +9 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>q^{24}-3 q^{23}+q^{22}+5 q^{21}+q^{20}-14 q^{19}-6 q^{18}+29 q^{17}+17 q^{16}-43 q^{15}-40 q^{14}+55 q^{13}+73 q^{12}-64 q^{11}-108 q^{10}+61 q^9+146 q^8-53 q^7-177 q^6+38 q^5+205 q^4-26 q^3-216 q^2+6 q+225+6 q^{-1} -216 q^{-2} -26 q^{-3} +205 q^{-4} +38 q^{-5} -177 q^{-6} -53 q^{-7} +146 q^{-8} +61 q^{-9} -108 q^{-10} -64 q^{-11} +73 q^{-12} +55 q^{-13} -40 q^{-14} -43 q^{-15} +17 q^{-16} +29 q^{-17} -6 q^{-18} -14 q^{-19} + q^{-20} +5 q^{-21} + q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{40}-3 q^{39}+q^{38}+5 q^{37}-3 q^{36}+q^{35}-17 q^{34}+6 q^{33}+31 q^{32}+q^{31}-82 q^{29}-16 q^{28}+96 q^{27}+69 q^{26}+52 q^{25}-216 q^{24}-146 q^{23}+120 q^{22}+216 q^{21}+260 q^{20}-323 q^{19}-393 q^{18}-7 q^{17}+340 q^{16}+605 q^{15}-292 q^{14}-631 q^{13}-265 q^{12}+347 q^{11}+945 q^{10}-149 q^9-759 q^8-522 q^7+261 q^6+1161 q^5+11 q^4-771 q^3-694 q^2+144 q+1233+144 q^{-1} -694 q^{-2} -771 q^{-3} +11 q^{-4} +1161 q^{-5} +261 q^{-6} -522 q^{-7} -759 q^{-8} -149 q^{-9} +945 q^{-10} +347 q^{-11} -265 q^{-12} -631 q^{-13} -292 q^{-14} +605 q^{-15} +340 q^{-16} -7 q^{-17} -393 q^{-18} -323 q^{-19} +260 q^{-20} +216 q^{-21} +120 q^{-22} -146 q^{-23} -216 q^{-24} +52 q^{-25} +69 q^{-26} +96 q^{-27} -16 q^{-28} -82 q^{-29} + q^{-31} +31 q^{-32} +6 q^{-33} -17 q^{-34} + q^{-35} -3 q^{-36} +5 q^{-37} + q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}-3 q^{55}-2 q^{54}-5 q^{53}+8 q^{52}+26 q^{51}+4 q^{50}-30 q^{49}-43 q^{48}-34 q^{47}+35 q^{46}+112 q^{45}+107 q^{44}-31 q^{43}-197 q^{42}-237 q^{41}-60 q^{40}+270 q^{39}+462 q^{38}+264 q^{37}-285 q^{36}-728 q^{35}-603 q^{34}+141 q^{33}+976 q^{32}+1094 q^{31}+186 q^{30}-1134 q^{29}-1650 q^{28}-699 q^{27}+1099 q^{26}+2200 q^{25}+1387 q^{24}-888 q^{23}-2662 q^{22}-2125 q^{21}+494 q^{20}+2955 q^{19}+2877 q^{18}+9 q^{17}-3114 q^{16}-3506 q^{15}-568 q^{14}+3121 q^{13}+4033 q^{12}+1086 q^{11}-3040 q^{10}-4387 q^9-1560 q^8+2881 q^7+4660 q^6+1920 q^5-2707 q^4-4762 q^3-2247 q^2+2479 q+4841+2479 q^{-1} -2247 q^{-2} -4762 q^{-3} -2707 q^{-4} +1920 q^{-5} +4660 q^{-6} +2881 q^{-7} -1560 q^{-8} -4387 q^{-9} -3040 q^{-10} +1086 q^{-11} +4033 q^{-12} +3121 q^{-13} -568 q^{-14} -3506 q^{-15} -3114 q^{-16} +9 q^{-17} +2877 q^{-18} +2955 q^{-19} +494 q^{-20} -2125 q^{-21} -2662 q^{-22} -888 q^{-23} +1387 q^{-24} +2200 q^{-25} +1099 q^{-26} -699 q^{-27} -1650 q^{-28} -1134 q^{-29} +186 q^{-30} +1094 q^{-31} +976 q^{-32} +141 q^{-33} -603 q^{-34} -728 q^{-35} -285 q^{-36} +264 q^{-37} +462 q^{-38} +270 q^{-39} -60 q^{-40} -237 q^{-41} -197 q^{-42} -31 q^{-43} +107 q^{-44} +112 q^{-45} +35 q^{-46} -34 q^{-47} -43 q^{-48} -30 q^{-49} +4 q^{-50} +26 q^{-51} +8 q^{-52} -5 q^{-53} -2 q^{-54} -3 q^{-55} -3 q^{-56} +5 q^{-57} + q^{-58} -3 q^{-59} + q^{-60} </math>|J6=<math>q^{84}-3 q^{83}+q^{82}+5 q^{81}-3 q^{80}-3 q^{79}-6 q^{78}+10 q^{77}-3 q^{76}+3 q^{75}+29 q^{74}-15 q^{73}-31 q^{72}-49 q^{71}+14 q^{70}+16 q^{69}+61 q^{68}+153 q^{67}+14 q^{66}-117 q^{65}-273 q^{64}-149 q^{63}-92 q^{62}+203 q^{61}+641 q^{60}+463 q^{59}+57 q^{58}-691 q^{57}-870 q^{56}-1005 q^{55}-189 q^{54}+1343 q^{53}+1882 q^{52}+1543 q^{51}-247 q^{50}-1725 q^{49}-3355 q^{48}-2544 q^{47}+658 q^{46}+3470 q^{45}+4894 q^{44}+2812 q^{43}-590 q^{42}-5842 q^{41}-7188 q^{40}-3328 q^{39}+2689 q^{38}+8288 q^{37}+8456 q^{36}+4312 q^{35}-5674 q^{34}-11801 q^{33}-10070 q^{32}-1954 q^{31}+8878 q^{30}+14013 q^{29}+11845 q^{28}-1776 q^{27}-13643 q^{26}-16608 q^{25}-8872 q^{24}+6032 q^{23}+16953 q^{22}+18906 q^{21}+4000 q^{20}-12400 q^{19}-20628 q^{18}-15121 q^{17}+1645 q^{16}+17146 q^{15}+23466 q^{14}+9075 q^{13}-9763 q^{12}-22071 q^{11}-19122 q^{10}-2210 q^9+15962 q^8+25565 q^7+12389 q^6-7226 q^5-22014 q^4-21134 q^3-4957 q^2+14414 q+26111+14414 q^{-1} -4957 q^{-2} -21134 q^{-3} -22014 q^{-4} -7226 q^{-5} +12389 q^{-6} +25565 q^{-7} +15962 q^{-8} -2210 q^{-9} -19122 q^{-10} -22071 q^{-11} -9763 q^{-12} +9075 q^{-13} +23466 q^{-14} +17146 q^{-15} +1645 q^{-16} -15121 q^{-17} -20628 q^{-18} -12400 q^{-19} +4000 q^{-20} +18906 q^{-21} +16953 q^{-22} +6032 q^{-23} -8872 q^{-24} -16608 q^{-25} -13643 q^{-26} -1776 q^{-27} +11845 q^{-28} +14013 q^{-29} +8878 q^{-30} -1954 q^{-31} -10070 q^{-32} -11801 q^{-33} -5674 q^{-34} +4312 q^{-35} +8456 q^{-36} +8288 q^{-37} +2689 q^{-38} -3328 q^{-39} -7188 q^{-40} -5842 q^{-41} -590 q^{-42} +2812 q^{-43} +4894 q^{-44} +3470 q^{-45} +658 q^{-46} -2544 q^{-47} -3355 q^{-48} -1725 q^{-49} -247 q^{-50} +1543 q^{-51} +1882 q^{-52} +1343 q^{-53} -189 q^{-54} -1005 q^{-55} -870 q^{-56} -691 q^{-57} +57 q^{-58} +463 q^{-59} +641 q^{-60} +203 q^{-61} -92 q^{-62} -149 q^{-63} -273 q^{-64} -117 q^{-65} +14 q^{-66} +153 q^{-67} +61 q^{-68} +16 q^{-69} +14 q^{-70} -49 q^{-71} -31 q^{-72} -15 q^{-73} +29 q^{-74} +3 q^{-75} -3 q^{-76} +10 q^{-77} -6 q^{-78} -3 q^{-79} -3 q^{-80} +5 q^{-81} + q^{-82} -3 q^{-83} + q^{-84} </math>|J7=<math>q^{112}-3 q^{111}+q^{110}+5 q^{109}-3 q^{108}-3 q^{107}-6 q^{106}+6 q^{105}+12 q^{104}-8 q^{103}+6 q^{102}+10 q^{101}-16 q^{100}-26 q^{99}-41 q^{98}+7 q^{97}+74 q^{96}+44 q^{95}+71 q^{94}+43 q^{93}-78 q^{92}-159 q^{91}-283 q^{90}-154 q^{89}+143 q^{88}+317 q^{87}+550 q^{86}+516 q^{85}+93 q^{84}-417 q^{83}-1159 q^{82}-1332 q^{81}-683 q^{80}+256 q^{79}+1725 q^{78}+2573 q^{77}+2216 q^{76}+836 q^{75}-1934 q^{74}-4278 q^{73}-4774 q^{72}-3301 q^{71}+913 q^{70}+5542 q^{69}+8189 q^{68}+7815 q^{67}+2389 q^{66}-5364 q^{65}-11792 q^{64}-14143 q^{63}-8598 q^{62}+2327 q^{61}+13890 q^{60}+21402 q^{59}+18063 q^{58}+4775 q^{57}-12979 q^{56}-28137 q^{55}-29695 q^{54}-16138 q^{53}+7462 q^{52}+32099 q^{51}+41960 q^{50}+31319 q^{49}+3221 q^{48}-31814 q^{47}-52797 q^{46}-48414 q^{45}-18546 q^{44}+26269 q^{43}+60101 q^{42}+65456 q^{41}+37209 q^{40}-15734 q^{39}-62982 q^{38}-80416 q^{37}-56819 q^{36}+1416 q^{35}+61028 q^{34}+91744 q^{33}+75657 q^{32}+14955 q^{31}-55290 q^{30}-98994 q^{29}-91866 q^{28}-31357 q^{27}+46837 q^{26}+102372 q^{25}+104758 q^{24}+46339 q^{23}-37376 q^{22}-102713 q^{21}-113992 q^{20}-58991 q^{19}+28020 q^{18}+101063 q^{17}+120209 q^{16}+68876 q^{15}-19792 q^{14}-98300 q^{13}-123826 q^{12}-76313 q^{11}+12722 q^{10}+95254 q^9+125943 q^8+81699 q^7-7156 q^6-92151 q^5-126720 q^4-85773 q^3+2177 q^2+89089 q+127145+89089 q^{-1} +2177 q^{-2} -85773 q^{-3} -126720 q^{-4} -92151 q^{-5} -7156 q^{-6} +81699 q^{-7} +125943 q^{-8} +95254 q^{-9} +12722 q^{-10} -76313 q^{-11} -123826 q^{-12} -98300 q^{-13} -19792 q^{-14} +68876 q^{-15} +120209 q^{-16} +101063 q^{-17} +28020 q^{-18} -58991 q^{-19} -113992 q^{-20} -102713 q^{-21} -37376 q^{-22} +46339 q^{-23} +104758 q^{-24} +102372 q^{-25} +46837 q^{-26} -31357 q^{-27} -91866 q^{-28} -98994 q^{-29} -55290 q^{-30} +14955 q^{-31} +75657 q^{-32} +91744 q^{-33} +61028 q^{-34} +1416 q^{-35} -56819 q^{-36} -80416 q^{-37} -62982 q^{-38} -15734 q^{-39} +37209 q^{-40} +65456 q^{-41} +60101 q^{-42} +26269 q^{-43} -18546 q^{-44} -48414 q^{-45} -52797 q^{-46} -31814 q^{-47} +3221 q^{-48} +31319 q^{-49} +41960 q^{-50} +32099 q^{-51} +7462 q^{-52} -16138 q^{-53} -29695 q^{-54} -28137 q^{-55} -12979 q^{-56} +4775 q^{-57} +18063 q^{-58} +21402 q^{-59} +13890 q^{-60} +2327 q^{-61} -8598 q^{-62} -14143 q^{-63} -11792 q^{-64} -5364 q^{-65} +2389 q^{-66} +7815 q^{-67} +8189 q^{-68} +5542 q^{-69} +913 q^{-70} -3301 q^{-71} -4774 q^{-72} -4278 q^{-73} -1934 q^{-74} +836 q^{-75} +2216 q^{-76} +2573 q^{-77} +1725 q^{-78} +256 q^{-79} -683 q^{-80} -1332 q^{-81} -1159 q^{-82} -417 q^{-83} +93 q^{-84} +516 q^{-85} +550 q^{-86} +317 q^{-87} +143 q^{-88} -154 q^{-89} -283 q^{-90} -159 q^{-91} -78 q^{-92} +43 q^{-93} +71 q^{-94} +44 q^{-95} +74 q^{-96} +7 q^{-97} -41 q^{-98} -26 q^{-99} -16 q^{-100} +10 q^{-101} +6 q^{-102} -8 q^{-103} +12 q^{-104} +6 q^{-105} -6 q^{-106} -3 q^{-107} -3 q^{-108} +5 q^{-109} + q^{-110} -3 q^{-111} + q^{-112} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 17]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 17]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14], |
|||
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr> |
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 17]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 17]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 17]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 12, 14, 4, 16, 2, 10]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 17]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 17]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 17]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 1, 3, 3, 4, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 17]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 8 2 3 |
|||
11 - t + -- - - - 8 t + 4 t - t |
11 - t + -- - - - 8 t + 4 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 17]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 17]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - z - 2 z - z</nowiki></pre></td></tr> |
1 - z - 2 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 17], Knot[11, NonAlternating, 53]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 17]], KnotSignature[Knot[8, 17]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 17]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 6 2 3 4 |
|||
7 + q - -- + -- - - - 6 q + 5 q - 3 q + q |
7 + q - -- + -- - - - 6 q + 5 q - 3 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 17]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 17]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 17]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -4 2 2 4 8 10 12 |
|||
-1 + q - q + q - q + -- + 2 q - q + q - q + q |
-1 + q - q + q - q + -- + 2 q - q + q - q + q |
||
2 |
2 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 17]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 17]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
-2 2 2 2 z 2 2 4 z 2 4 6 |
|||
-1 + a + a - 5 z + ---- + 2 a z - 4 z + -- + a z - z |
|||
2 2 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 17]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-2 2 z 2 z 3 2 z 3 z 2 2 |
-2 2 z 2 z 3 2 z 3 z 2 2 |
||
-1 - a - a + -- + --- + 2 a z + a z + 8 z - -- + ---- + 3 a z - |
-1 - a - a + -- + --- + 2 a z + a z + 8 z - -- + ---- + 3 a z - |
||
Line 106: | Line 168: | ||
4 a z + ---- + 2 a z |
4 a z + ---- + 2 a z |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 17]], Vassiliev[3][Knot[8, 17]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 17]], Vassiliev[3][Knot[8, 17]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 3 2 3 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 17]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 3 2 3 3 |
|||
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t + |
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 116: | Line 180: | ||
3 3 2 5 2 5 3 7 3 9 4 |
3 3 2 5 2 5 3 7 3 9 4 |
||
3 q t + 2 q t + 3 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
3 q t + 2 q t + 3 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 17], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 -10 9 14 3 28 25 14 47 29 25 |
|||
55 + q - --- + q + -- - -- - -- + -- - -- - -- + -- - -- - -- - |
|||
11 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q |
|||
2 3 4 5 6 7 8 9 |
|||
25 q - 29 q + 47 q - 14 q - 25 q + 28 q - 3 q - 14 q + 9 q + |
|||
10 11 12 |
|||
q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:07, 29 August 2005
|
|
Visit 8 17's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 17's page at Knotilus! Visit 8 17's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X6271 X14,8,15,7 X8394 X2,13,3,14 X12,5,13,6 X4,9,5,10 X16,12,1,11 X10,16,11,15 |
Gauss code | 1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7 |
Dowker-Thistlethwaite code | 6 8 12 14 4 16 2 10 |
Conway Notation | [.2.2] |
Length is 8, width is 3. Braid index is 3. |
Three dimensional invariants
|
[edit Notes for 8 17's three dimensional invariants] 8_17 is the first negatively amphicheiral knot in the Rolfsen Table. Namely, it is equal to the inverse of its mirror, yet it is different from both its inverse and its mirror. |
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 17"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n53, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 17. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.