In[1]:=      | 
<< KnotTheory`  | 
Loading KnotTheory` (version of August 29, 2005, 15:27:48)...  | 
In[2]:=  | PD[Knot[10, 136]]  | 
Out[2]=    | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[14, 8, 15, 7], X[18, 12, 19, 11], X[20, 15, 1, 16], 
 
  X[16, 19, 17, 20], X[12, 18, 13, 17], X[6, 14, 7, 13]]  | 
In[3]:=  | GaussCode[Knot[10, 136]]  | 
Out[3]=    | GaussCode[-1, 4, -3, 1, -2, -10, 5, 3, -4, 2, 6, -9, 10, -5, 7, -8, 9, 
  -6, 8, -7]  | 
In[4]:=  | DTCode[Knot[10, 136]]  | 
Out[4]=    | DTCode[4, 8, 10, -14, 2, -18, -6, -20, -12, -16]  | 
In[5]:=  | br = BR[Knot[10, 136]]  | 
Out[5]=    | BR[5, {1, -2, 1, -2, -3, 2, 2, 4, -3, 4}] | 
In[6]:=  | {First[br], Crossings[br]} | 
Out[6]=    | {5, 10} | 
In[7]:=  | BraidIndex[Knot[10, 136]]  | 
Out[7]=    | 4  | 
In[8]:=  | Show[DrawMorseLink[Knot[10, 136]]]  | 
 |   | 
| Out[8]= | -Graphics- | 
In[9]:=  | (#[Knot[10, 136]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
Out[9]=    | {Reversible, 1, 2, 3, NotAvailable, 1} | 
In[10]:=  | alex = Alexander[Knot[10, 136]][t]  | 
Out[10]=    |       -2   4          2
-5 - t   + - + 4 t - t
 
           t  | 
In[11]:=  | Conway[Knot[10, 136]][z]  | 
Out[11]=    |      4
1 - z  | 
In[12]:=  | Select[AllKnots[], (alex === Alexander[#][t])&]  | 
Out[12]=    | {Knot[8, 21], Knot[10, 136]} | 
In[13]:=  | {KnotDet[Knot[10, 136]], KnotSignature[Knot[10, 136]]} | 
Out[13]=    | {15, 2} | 
In[14]:=  | Jones[Knot[10, 136]][q]  | 
Out[14]=    |       -3   2    2            2      3    4
-2 + q   - -- + - + 3 q - 2 q  + 2 q  - q
 
           2   q
 
           q  | 
In[15]:=  | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]  | 
Out[15]=    | {Knot[10, 136], Knot[11, NonAlternating, 92]} | 
In[16]:=  | A2Invariant[Knot[10, 136]][q]  | 
Out[16]=    |  -10    -2    4      6    8    10    12    14
q    - q   + q  + 2 q  + q  + q   - q   - q  | 
In[17]:=  | HOMFLYPT[Knot[10, 136]][a, z]  | 
Out[17]=    |                                2
     -4   3     2      2   2 z     2  2    4
 
-2 - a   + -- + a  - 3 z  + ---- + a  z  - z
 
           2                 2
 
           a                 a  | 
In[18]:=  | Kauffman[Knot[10, 136]][a, z]  | 
Out[18]=    |                                                  2      2
     -4   3     2   2 z   4 z              2   z    4 z       2  2
 
-2 - a   - -- - a  - --- - --- - 2 a z + 6 z  + -- + ---- + 3 a  z  + 
 
           2         3     a                    4     2
          a         a                          a     a
    3       3                      4                5       5
 7 z    16 z         3      4   2 z       2  4   5 z    14 z
 ---- + ----- + 9 a z  - 2 z  + ---- - 4 a  z  - ---- - ----- - 
   3      a                       2                3      a
  a                              a                a
                    6            7      7                  8
      5      6   4 z     2  6   z    3 z         7    8   z
 9 a z  - 3 z  - ---- + a  z  + -- + ---- + 2 a z  + z  + --
                   2             3    a                    2
                   a             a                         a  | 
In[19]:=  | {Vassiliev[2][Knot[10, 136]], Vassiliev[3][Knot[10, 136]]} | 
Out[19]=    | {0, 1} | 
In[20]:=  | Kh[Knot[10, 136]][q, t]  | 
Out[20]=    | 1            3     1       1       1       1      1      2    q
- + 2 q + 2 q  + ----- + ----- + ----- + ----- + ---- + --- + - + 
q                 7  4    5  3    3  3    3  2      2   q t   t
 
                q  t    q  t    q  t    q  t    q t
  3      5      5  2    7  2    9  3
 
  q  t + q  t + q  t  + q  t  + q  t  | 
In[21]:=  | ColouredJones[Knot[10, 136], 2][q]  | 
Out[21]=    |  -10   2     -8   5    3    3    6    2    3    3        3    4
q    - -- - q   + -- - -- - -- + -- - -- - -- + - - q + q  + q  - 
 
       9          7    6    5    4    3    2   q
      q          q    q    q    q    q    q
    5      6      7      8      10      11    12    13
  3 q  + 2 q  + 3 q  - 4 q  + 3 q   - 2 q   - q   + q  |