Structure and Operations: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
<!--$$?Crossings$$--> |
<!--$$?Crossings$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=1|s=Crossings}} |
||
Crossings[L] returns the number of crossings of a knot/link L (in its given presentation). |
Crossings[L] returns the number of crossings of a knot/link L (in its given presentation). |
||
{{Help2}} |
{{Help2}} |
||
Line 11: | Line 11: | ||
<!--$$?PositiveCrossings$$--> |
<!--$$?PositiveCrossings$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=2|s=PositiveCrossings}} |
||
PositiveCrossings[L] returns the number of positive (right handed) crossings in a knot/link L (in its given presentation). |
PositiveCrossings[L] returns the number of positive (right handed) crossings in a knot/link L (in its given presentation). |
||
{{Help2}} |
{{Help2}} |
||
Line 18: | Line 18: | ||
<!--$$?NegativeCrossings$$--> |
<!--$$?NegativeCrossings$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=3|s=NegativeCrossings}} |
||
NegativeCrossings[L] returns the number of negaitve (left handed) crossings in a knot/link L (in its given presentation). |
NegativeCrossings[L] returns the number of negaitve (left handed) crossings in a knot/link L (in its given presentation). |
||
{{Help2}} |
{{Help2}} |
||
Line 27: | Line 27: | ||
<!--$$Crossings /@ {Knot[0, 1], TorusKnot[11,10]}$$--> |
<!--$$Crossings /@ {Knot[0, 1], TorusKnot[11,10]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=4}} |
||
Crossings /@ {Knot[0, 1], TorusKnot[11,10]} |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings /@ {Knot[0, 1], TorusKnot[11,10]}</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki>{0, 99}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 37: | Line 37: | ||
<!--$$K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}$$--> |
<!--$$K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=5}} |
||
K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]} |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>{2, 4}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$?PositiveQ$$--> |
<!--$$?PositiveQ$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=6|s=PositiveQ}} |
||
PositiveQ[xing] returns True if xing is a positive (right handed) crossing and False if it is negative (left handed). |
PositiveQ[xing] returns True if xing is a positive (right handed) crossing and False if it is negative (left handed). |
||
{{Help2}} |
{{Help2}} |
||
Line 52: | Line 52: | ||
<!--$$?NegativeQ$$--> |
<!--$$?NegativeQ$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=7|s=NegativeQ}} |
||
NegativeQ[xing] returns True if xing is a negative (left handed) crossing and False if it is positive (right handed). |
NegativeQ[xing] returns True if xing is a negative (left handed) crossing and False if it is positive (right handed). |
||
{{Help2}} |
{{Help2}} |
||
Line 61: | Line 61: | ||
<!--$$PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}$$--> |
<!--$$PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=8}} |
||
PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]} |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>{False, True, True, True}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$?ConnectedSum$$--> |
<!--$$?ConnectedSum$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=9|s=ConnectedSum}} |
||
ConnectedSum[K1, K2] represents the connected sum of the knots K1 and K2 (ConnectedSum may not work with links). |
ConnectedSum[K1, K2] represents the connected sum of the knots K1 and K2 (ConnectedSum may not work with links). |
||
{{Help2}} |
{{Help2}} |
||
Line 78: | Line 78: | ||
<!--$$K = ConnectedSum[Knot[4,1], Knot[4,1]]$$--> |
<!--$$K = ConnectedSum[Knot[4,1], Knot[4,1]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=10}} |
||
K = ConnectedSum[Knot[4,1], Knot[4,1]] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = ConnectedSum[Knot[4,1], Knot[4,1]]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=10}}<pre style="border: 0px; padding: 0em"><nowiki>ConnectedSum[Knot[4, 1], Knot[4, 1]]</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Crossings[K]$$--> |
<!--$$Crossings[K]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=11}} |
||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[K]</nowiki></pre> |
|||
Crossings[K] |
|||
{{InOut2|n= |
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>8</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 97: | Line 97: | ||
<!--$$Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]$$--> |
<!--$$Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=12}} |
||
Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 107: | Line 107: | ||
<!--$$Jones[K][q] == Jones[Knot[8,9]][q]$$--> |
<!--$$Jones[K][q] == Jones[Knot[8,9]][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=13}} |
||
Jones[K][q] == Jones[Knot[8,9]][q] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[K][q] == Jones[Knot[8,9]][q]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 117: | Line 117: | ||
<!--$${Alexander[K][t], Alexander[Knot[8,9]][t]}$$--> |
<!--$${Alexander[K][t], Alexander[Knot[8,9]][t]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=14}} |
||
{Alexander[K][t], Alexander[Knot[8,9]][t]} |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>{Alexander[K][t], Alexander[Knot[8,9]][t]}</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=14}}<pre style="border: 0px; padding: 0em"><nowiki> -2 6 2 -3 3 5 2 3 |
||
{11 + t - - - 6 t + t , 7 - t + -- - - - 5 t + 3 t - t } |
{11 + t - - - 6 t + t , 7 - t + -- - - - 5 t + 3 t - t } |
||
t 2 t |
t 2 t |
Revision as of 19:43, 27 August 2005
(For In[1] see Setup)
In[1]:= ?Crossings
Crossings[L] returns the number of crossings of a knot/link L (in its given presentation). |
In[2]:= ?PositiveCrossings
PositiveCrossings[L] returns the number of positive (right handed) crossings in a knot/link L (in its given presentation). |
In[3]:= ?NegativeCrossings
NegativeCrossings[L] returns the number of negaitve (left handed) crossings in a knot/link L (in its given presentation). |
Thus here's one tautology and one easy example:
In[4]:= |
Crossings /@ {Knot[0, 1], TorusKnot[11,10]} |
Out[4]= | {0, 99} |
And another easy example:
In[5]:= |
K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]} |
Out[5]= | {2, 4} |
In[6]:= ?PositiveQ
PositiveQ[xing] returns True if xing is a positive (right handed) crossing and False if it is negative (left handed). |
In[7]:= ?NegativeQ
NegativeQ[xing] returns True if xing is a negative (left handed) crossing and False if it is positive (right handed). |
For example,
In[8]:= |
PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]} |
Out[8]= | {False, True, True, True} |
In[9]:= ?ConnectedSum
ConnectedSum[K1, K2] represents the connected sum of the knots K1 and K2 (ConnectedSum may not work with links). |
The connected sum of the knot 4_1 with itself has 8 crossings (unsurprisingly):
In[10]:= |
K = ConnectedSum[Knot[4,1], Knot[4,1]] |
Out[10]= | ConnectedSum[Knot[4, 1], Knot[4, 1]] |
In[11]:= |
Crossings[K] |
Out[11]= | 8 |
It is also nice to know that, as expected, the Jones polynomial of is the square of the Jones polynomial of 4_1:
In[12]:= |
Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2] |
Out[12]= | True |
It is less nice to know that the Jones polynomial cannot tell apart from the knot 8_9:
In[13]:= |
Jones[K][q] == Jones[Knot[8,9]][q] |
Out[13]= | True |
But isn't equivalent to 8_9; indeed, their Alexander polynomials are different:
In[14]:= |
{Alexander[K][t], Alexander[Knot[8,9]][t]} |
Out[14]= | -2 6 2 -3 3 5 2 3 {11 + t - - - 6 t + t , 7 - t + -- - - - 5 t + 3 t - t } t 2 t t |