Invariants from Braid Theory: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 6: Line 6:


<!--$$?BraidLength$$-->
<!--$$?BraidLength$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=2|s=BraidLength}}
{{Help1|n=1|s=BraidLength}}
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.
BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.
{{Help2}}
{{Help2}}
Line 15: Line 15:


<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--$$K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=3}}
{{InOut1|n=2}}
K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}</nowiki></pre>
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki>{11, 11}</nowiki></pre>
{{InOut2|n=2}}<pre style="border: 0px; padding: 0em"><nowiki>{11, 11}</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->
Line 25: Line 25:


<!--$$?BraidIndex$$-->
<!--$$?BraidIndex$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=4|s=BraidIndex}}
{{HelpAndAbout1|n=3|s=BraidIndex}}
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.
{{HelpAndAbout2|n=5|s=BraidIndex}}
{{HelpAndAbout2|n=4|s=BraidIndex}}
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 36: Line 36:


<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--$$K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=6}}
{{InOut1|n=5}}
K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}</nowiki></pre>
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>{4, 5}</nowiki></pre>
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>{4, 5}</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--$$Show[BraidPlot[BR[K]]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Graphics1|n=7}}
{{Graphics1|n=6}}
Show[BraidPlot[BR[K]]]
Show[BraidPlot[BR[K]]]
{{Graphics2|n=7|imagename=Invariants_from_Braid_Theory_Out_7.gif}}
{{Graphics2|n=6|imagename=Invariants_from_Braid_Theory_Out_6.gif}}
<!--END-->
<!--END-->

Revision as of 19:43, 27 August 2005


The braid length of a knot or a link is the smallest number of crossings in a braid whose closure is . KnotTheory` has some braid lengths preloaded:

(For In[1] see Setup)

In[1]:= ?BraidLength

BraidLength[K] returns the braid length of the knot K, if known to KnotTheory`.

Note that the braid length of is simply the length of the minimum braid representing (see Braid Representatives):

In[2]:=
K = Knot[9, 49]; {BraidLength[K], Crossings[BR[K]]}
Out[2]=
{11, 11}

The braid index of a knot or a link is the smallest number of strands in a braid whose closure is . KnotTheory` has some braid indices preloaded:

In[3]:= ?BraidIndex

BraidIndex[K] returns the braid index of the knot K, if known to KnotTheory`.

In[4]:= BraidIndex::about

The braid index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Of the 250 knots with up to 10 crossings, only 10_136 has braid index smaller than the width of its minimum braid:

In[5]:=
K = Knot[10, 136]; {BraidIndex[K], First@BR[K]}
Out[5]=
{4, 5}
In[6]:=

Show[BraidPlot[BR[K]]]

Invariants from Braid Theory Out 6.gif
Out[6]= -Graphics-