|
|
Line 46: |
Line 46: |
|
{{InOut| |
|
{{InOut| |
|
n = 6 | |
|
n = 6 | |
|
in = <nowiki>Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]</nowiki> | |
|
in = <nowiki>Select[AllKnots[], |
|
|
Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List & |
|
|
]</nowiki> | |
|
out= <nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki>}} |
|
out= <nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki>}} |
|
<!--END--> |
|
<!--END--> |
Revision as of 12:13, 30 August 2005
(For In[1] see Setup)
In[1]:=
|
?SymmetryType
|
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.
|
|
In[2]:=
|
SymmetryType::about
|
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
|
|
The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .
In[3]:=
|
?UnknottingNumber
|
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
|
|
In[4]:=
|
UnknottingNumber::about
|
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
|
|
Of the 512 knots whose unknotting number is known to KnotTheory`
, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:
In[5]:=
|
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
|
Out[5]=
|
u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]
|
There are 4 knots with up to 9 crossings whose unknotting number is unknown:
In[6]:=
|
Select[AllKnots[],
Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &
]
|
Out[6]=
|
{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
|
In[7]:=
|
?ThreeGenus
|
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.
|
|
In[8]:=
|
ThreeGenus::about
|
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
|
|
The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .
In[9]:=
|
?BridgeIndex
|
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.
|
|
In[10]:=
|
BridgeIndex::about
|
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
|
|
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
In[11]:=
|
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
|
Out[11]=
|
{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5],
Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10],
Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15],
Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21],
Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}
|
The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
In[12]:=
|
?SuperBridgeIndex
|
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
|
|
In[13]:=
|
SuperBridgeIndex::about
|
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
|
|
In[14]:=
|
?NakanishiIndex
|
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.
|
|
In[15]:=
|
NakanishiIndex::about
|
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
|
|
In[16]:=
|
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]
|
In[17]:=
|
Profile[Knot[9,24]]
|
Out[17]=
|
Profile[Reversible, 1, 3, 3, {4, 6}, 1]
|
In[18]:=
|
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
|
Out[18]=
|
{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
|
In[19]:=
|
Alexander[#][t]& /@ Ks
|
Out[19]=
|
-3 5 10 2 3
{13 - t + -- - -- - 10 t + 5 t - t ,
2 t
t
-3 5 12 2 3
-15 + t - -- + -- + 12 t - 5 t + t ,
2 t
t
-3 5 12 2 3
17 - t + -- - -- - 12 t + 5 t - t ,
2 t
t
-3 6 16 2 3
23 - t + -- - -- - 16 t + 6 t - t }
2 t
t
|